{"title":"Temporal Profiling of Male Cortical Astrocyte Transcription Predicts Molecular Shifts From Early Development to Aging.","authors":"Xiaoran Wei, Jiangtao Li, Michelle L Olsen","doi":"10.1002/glia.70010","DOIUrl":"https://doi.org/10.1002/glia.70010","url":null,"abstract":"<p><p>Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Astrocytes are born during the early postnatal period in the rodent brain and mature alongside neurons, demonstrating remarkable morphological structural complexity, which is attained in the second postnatal month. Throughout this period of development and across the remainder of the lifespan, astrocytes participate in CNS homeostasis, support neuronal partners, and contribute to nearly all aspects of CNS function. In the present study, we analyzed astrocyte gene expression in the cortex of wild-type male rodents throughout their lifespan (postnatal 7 days to 18 months). A pairwise timepoint comparison of differential gene expression during early development and CNS maturation (7-60 days) revealed four unique astrocyte gene clusters, each with hundreds of genes, which demonstrate unique temporal profiles. These clusters are distinctively related to cell division, cell morphology, cellular communication, and vascular structure and regulation. A similar analysis across adulthood and in the aging brain (3 to 18 months) identified similar patterns of grouped gene expression related to cell metabolism and cell structure. Additionally, our analysis identified that during the aging process astrocytes demonstrate a bias toward shorter transcripts, with loss of longer genes related to synapse development and a significant increase in shorter transcripts related to immune regulation and the response to DNA damage. Our study highlights the critical role that astrocytes play in maintaining CNS function throughout life and reveals molecular shifts that occur during development and aging in the cortex of male mice.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rianne P Gorter, Andrea J Arreguin, Wendy Oost, Jenny C de Jonge, Harm H Kampinga, Sandra Amor, Holly Colognato, Wia Baron
{"title":"Unexpected Remyelination in the Absence of Matrix Metalloproteinase 7.","authors":"Rianne P Gorter, Andrea J Arreguin, Wendy Oost, Jenny C de Jonge, Harm H Kampinga, Sandra Amor, Holly Colognato, Wia Baron","doi":"10.1002/glia.70005","DOIUrl":"https://doi.org/10.1002/glia.70005","url":null,"abstract":"<p><p>In multiple sclerosis (MS), an influx of immune cells into the central nervous system leads to focal demyelinating lesions in the brain, optic nerve, and spinal cord. As MS progresses, remyelination increasingly fails, leaving neuronal axons vulnerable to degeneration and resulting in permanent neurological disability. In chronic MS lesions, the aberrant accumulation of extracellular matrix (ECM) molecules, including fibronectin and hyaluronan, impairs oligodendrocyte progenitor cell differentiation, contributing to remyelination failure. Removing inhibitory ECM is therefore a therapeutic target to stimulate remyelination in MS. Intriguingly, the expression of the fibronectin-degrading enzyme matrix metalloproteinase 7 (MMP7) is decreased in chronic MS lesions compared to control white matter. Therefore, we examined the role of MMP7 upon cuprizone-induced demyelination, hypothesizing that the lack of MMP7 would lead to impaired breakdown of its ECM substrates, including fibronectin, and diminished remyelination. Unexpectedly, remyelination proceeded efficiently in the absence of MMP7. In the remyelination phase, the lack of MMP7 did not lead to the accumulation of fibronectin or of laminin, another MMP7 substrate. Moreover, in the setting of chronic demyelination, levels of fibronectin were actually lower in MMP7<sup>-/-</sup> mice, while levels of hyaluronan, which is not a known MMP7 substrate, were also lower. Overall, these results indicate that MMP7 is not essential for remyelination in the cuprizone model and point to an unexpected complexity in how MMP7 deficiency influences fibronectin and hyaluronan levels in chronic demyelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsay K Festa, Kelly L Jordan-Sciutto, Judith B Grinspan
{"title":"Neuroinflammation: An Oligodendrocentric View.","authors":"Lindsay K Festa, Kelly L Jordan-Sciutto, Judith B Grinspan","doi":"10.1002/glia.70007","DOIUrl":"10.1002/glia.70007","url":null,"abstract":"<p><p>Chronic neuroinflammation, driven by central nervous system (CNS)-resident astrocytes and microglia, as well as infiltration of the peripheral immune system, is an important pathologic mechanism across a range of neurologic diseases. For decades, research focused almost exclusively on how neuroinflammation impacted neuronal function; however, there is accumulating evidence that injury to the oligodendrocyte lineage is an important component for both pathologic and clinical outcomes. While oligodendrocytes are able to undergo an endogenous repair process known as remyelination, this process becomes inefficient and usually fails in the presence of sustained inflammation. The present review focuses on our current knowledge regarding activation of the innate and adaptive immune systems in the chronic demyelinating disease, multiple sclerosis, and provides evidence that sustained neuroinflammation in other neurologic conditions, such as perinatal white matter injury, traumatic brain injury, and viral infections, converges on oligodendrocyte injury. Lastly, the therapeutic potential of targeting the impact of inflammation on the oligodendrocyte lineage in these diseases is discussed.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan L Wright, Yi Jiang, Stuart G Nayar, Huiliang Li, William D Richardson
{"title":"The INO80 Chromatin Remodeling Complex Regulates Histone H2A.Z Mobility and the G1-S Transition in Oligodendrocyte Precursors.","authors":"Jordan L Wright, Yi Jiang, Stuart G Nayar, Huiliang Li, William D Richardson","doi":"10.1002/glia.70006","DOIUrl":"https://doi.org/10.1002/glia.70006","url":null,"abstract":"<p><p>Chromatin remodeling complexes (CRCs) participate in oligodendrocyte (OL) differentiation, survival, and maintenance. We asked whether CRCs also control the proliferation of OL precursors (OPs)-focusing on the INO80 complex, which is known to regulate the proliferation of a variety of other cell types during development and disease. CRISPR/Cas9-mediated inactivation of Ino80 in vitro, or Cre-mediated deletion in vivo, slowed the OP cell cycle substantially by prolonging G1. RNAseq analysis revealed that E2F target genes were dysregulated in OPs from INO80-deficient mice, but correlated RNAseq and ATAC-seq uncovered no general correlation between gene expression and altered nucleosome positioning at transcription start sites. Fluorescence photobleaching experiments in cultured OPs demonstrated that histone H2A.Z mobility increased following the loss of INO80, suggesting that INO80 regulates the cell cycle machinery in OPs through H2A.Z/H2A exchange. We also present evidence that INO80 associates with OLIG2, a master regulator of OL development.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ki Jung Kim, Jae-Hun Lee, Jiwoon Lim, Taehee Lee, Jinhyeong Joo, Mridula Bhalla, Tao Wang, Rui Feng, C Justin Lee
{"title":"Astrocyte-Specific Phenotyping of FAD<sup>4T</sup> as an Alzheimer's Disease Mouse Model.","authors":"Ki Jung Kim, Jae-Hun Lee, Jiwoon Lim, Taehee Lee, Jinhyeong Joo, Mridula Bhalla, Tao Wang, Rui Feng, C Justin Lee","doi":"10.1002/glia.70002","DOIUrl":"https://doi.org/10.1002/glia.70002","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, characterized by memory decline and behavioral changes. Its pathological features include senile plaques, neurofibrillary tangles, and reactive gliosis, comprising abnormal accumulations of β-amyloid peptide (Aβ) and hyperphosphorylated tau protein surrounded by reactive astrocytes and microglia. Recently, it has emerged that severe reactive astrocytes and MAOB-dependent production of GABA and H<sub>2</sub>O<sub>2</sub> are the real causes of learning and memory impairment and neurodegeneration. Diverse mouse models for AD have been developed to clarify pathological mechanisms and discover therapeutic strategies and drugs. However, there are many shortfalls and discrepancies among them. A new AD mouse model named FAD<sup>4T</sup> has been developed to overcome various shortcomings. Here, we employed astrocyte-focused screening procedures to examine the pathological features of FAD<sup>4T</sup> as an AD model. Our results revealed that the FAD<sup>4T</sup> mice showed abnormal accumulation of Aβ plaques in overall brain regions at 6 and 12 months. We found astrocytic hypertrophy with a significant elevation of GFAP and LCN2. However, the expressions of MAOB and iNOS, a severe reactive astrocyte marker, were unchanged. Electrophysiological and behavioral analysis indicated aberrant tonic GABA release, reduced neuronal activity, and impaired CA1-specific memory. These findings demonstrate that FAD<sup>4T</sup> mice mimic pathological and functional features of AD, different from other AD mouse models. These findings demonstrate that FAD<sup>4T</sup> mimics some features of AD patients but lacks other important features, such as severe reactive astrocytes and neurodegeneration. This astrocyte-focused screening method offers valuable tools for advancing AD research and developing new therapeutic strategies.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caden M Henningfield, Minh Ngo, Kaitlin M Murray, Nellie E Kwang, Kate I Tsourmas, Jonathan Neumann, Zachary A Pashkutz, Shimako Kawauchi, Vivek Swarup, Thomas E Lane, Grant R MacGregor, Kim N Green
{"title":"Generation of an Inducible Destabilized-Domain Cre Mouse Line to Target Disease Associated Microglia.","authors":"Caden M Henningfield, Minh Ngo, Kaitlin M Murray, Nellie E Kwang, Kate I Tsourmas, Jonathan Neumann, Zachary A Pashkutz, Shimako Kawauchi, Vivek Swarup, Thomas E Lane, Grant R MacGregor, Kim N Green","doi":"10.1002/glia.70004","DOIUrl":"10.1002/glia.70004","url":null,"abstract":"<p><p>The function of microglia during progression of Alzheimer's disease (AD) can be investigated using mouse models that enable genetic manipulation of microglial subpopulations in a temporal manner. We developed mouse lines that express either Cre recombinase (Cre) for constitutive targeting, or destabilized-domain Cre recombinase (DD-Cre) for inducible targeting from the Cst7 locus (Cst7<sup>DD-Cre</sup>) to specifically manipulate disease associated microglia (DAM) and crossed with Ai14 tdTomato cre-reporter line mice. Cst7<sup>Cre</sup> was found to target all brain resident myeloid cells, due to transient developmental expression of Cst7, but no expression was found in the inducible Cst7<sup>DD-Cre</sup> mice. Further crossing of this line with 5xFAD mice combined with dietary administration of trimethoprim to induce DD-Cre activity produces long-term labeling in DAM without evidence of leakiness, with tdTomato-expression restricted to cells surrounding plaques. Using this model, we found that DAMs are a subset of plaque-associated microglia (PAMs) and their transition to DAM increases with age and disease stage. Spatial transcriptomic analysis revealed that tdTomato+ cells show higher expression of disease and inflammatory genes compared to other microglial populations, including non-labeled PAMs. These models allow either complete cre-loxP targeting of all brain myeloid cells (Cst7<sup>Cre</sup>), or inducible targeting of DAMs, without leakiness (Cst7<sup>DD-Cre</sup>).</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “Early Nuclear Phenotypes and Reactive Transformation in Human iPSC-Derived Astrocytes From ALS Patients With SOD1 Mutations”","authors":"","doi":"10.1002/glia.70003","DOIUrl":"10.1002/glia.70003","url":null,"abstract":"<p>Vincent Soubannier<sup>1 2</sup>, Mathilde Chaineau<sup>1 2</sup>, Eric Deneault <sup>1 2 4</sup>, Lale Gursu<sup>1 2</sup>, Sarah Lépine<sup>1 2</sup>, David Kalaydjian<sup>1 2</sup>, Julien Sirois<sup>1 2</sup>, Ghazal Haghi<sup>1 2</sup>, Guy Rouleau<sup>1</sup>, Thomas M Durcan<sup>1 2 3</sup>, Stefano Stifani<sup>1</sup>\u0000 </p><p>4- New address: Centre for Oncology, Radiopharmaceuticals and Research (CORR), Biologic and Radiopharmaceuticals Drugs Directorate (BRDD), Health Products and Food Branch (HPFD), Health Canada, Ottawa, ON K1A 0K9, Canada</p><p>An error in the author list led to the omission of Dr. Eric Deneault who helped generate the isogenic iPSCs used in this study. To correct this oversight, he is now included as an author in the corrected manuscript.</p><p>We apologize for this error.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 5","pages":"1107"},"PeriodicalIF":5.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vidya Ramesh, Eleni Tsoukala, Ioanna Kougianou, Zrinko Kozic, Karen Burr, Biju Viswanath, David Hampton, David Story, Bharath Kumar Reddy, Rakhi Pal, Owen Dando, Peter C Kind, Sumantra Chattarji, Bhuvaneish T Selvaraj, Siddharthan Chandran, Lida Zoupi
{"title":"The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes.","authors":"Vidya Ramesh, Eleni Tsoukala, Ioanna Kougianou, Zrinko Kozic, Karen Burr, Biju Viswanath, David Hampton, David Story, Bharath Kumar Reddy, Rakhi Pal, Owen Dando, Peter C Kind, Sumantra Chattarji, Bhuvaneish T Selvaraj, Siddharthan Chandran, Lida Zoupi","doi":"10.1002/glia.24680","DOIUrl":"https://doi.org/10.1002/glia.24680","url":null,"abstract":"<p><p>The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji Che, Yuanyuan Wu, Jing Dong, Xuliang Jiang, Li Yang, Yali Chen, Jun Zhang
{"title":"Myelination Trajectory and Microglial Dynamics Following Repeated Sevoflurane Exposure in Developing Brain.","authors":"Ji Che, Yuanyuan Wu, Jing Dong, Xuliang Jiang, Li Yang, Yali Chen, Jun Zhang","doi":"10.1002/glia.70000","DOIUrl":"https://doi.org/10.1002/glia.70000","url":null,"abstract":"<p><p>The myelination is a critical process during brain development. This study aimed to explore the impact of volatile anesthetic sevoflurane on developing myelination and the role of microglial activation in this process. Neonatal C57BL/6J mice were exposed to sevoflurane at their postnatal 6-8 days. Neurobehavioral tests were used to assess fine motor and cognitive functions. Myelination of hippocampus (HC) and corpus callosum (CC), as well as microglial activation, were determined by western blotting and immunostaining. Lipid droplets were assessed by Oil-Red-O and Bodipy staining. Further, primary microglia were co-cultured with oligodendrocyte precursor cell (OPC) to determine the role of microglia in the proliferation and differentiation of OPC. And microglial inhibitor minocycline and CSF1R inhibitor PLX5622 were administered to assess the effects of microglial activation on developing myelination. The results showed that repeated sevoflurane exposure impaired both fine motor and cognitive functions and induced abnormal expressions of myelin-related proteins myelin basic protein (MBP) and platelet-derived growth factor α receptor (PDGFR-α). And accumulations of lipid droplets were found in the microglia of HC and CC after sevoflurane exposure. Further, the spatiotemporal response to repeated sevoflurane exposure in glial cells exhibited an aberrant myelination process and microglial polarization. The conditioned medium from sevoflurane-treated microglia inhibited the OPC proliferation and differentiation, while minocycline or PLX5622 alleviated sevoflurane-induced neuroinflammation and hypomyelination. Therefore, repeated sevoflurane exposure negatively affected OPC differentiation and myelination trajectory through hyperactivating microglia in developing brain, leading to motor and cognitive impairments, while microglial inhibition/depletion could protect against sevoflurane-induced damage on developing myelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}