C9orf72 Repeat Expansion Induces Metabolic Dysfunction in Human iPSC-Derived Microglia and Modulates Glial-Neuronal Crosstalk.

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Glia Pub Date : 2025-09-01 DOI:10.1002/glia.70080
Marika Mearelli, Insa Hirschberg, Christin Weissleder, Carmela Giachino, María José Pérez, Malvina Dubroux, Francesca Provenzano, Mafalda Rizzuti, Linda Ottoboni, Udit Sheth, Tania F Gendron, Stefania Corti, Michela Deleidi
{"title":"C9orf72 Repeat Expansion Induces Metabolic Dysfunction in Human iPSC-Derived Microglia and Modulates Glial-Neuronal Crosstalk.","authors":"Marika Mearelli, Insa Hirschberg, Christin Weissleder, Carmela Giachino, María José Pérez, Malvina Dubroux, Francesca Provenzano, Mafalda Rizzuti, Linda Ottoboni, Udit Sheth, Tania F Gendron, Stefania Corti, Michela Deleidi","doi":"10.1002/glia.70080","DOIUrl":null,"url":null,"abstract":"<p><p>The C9orf72 hexanucleotide repeat expansion mutation is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but its cell type-specific effects on energy metabolism and immune pathways remain poorly understood. Using induced pluripotent stem cell (iPSC)-derived motor neurons, astrocytes, and microglia from C9orf72 patients and their isogenic controls, we investigated metabolic changes at the single-cell level under basal and inflammatory conditions. Our results showed that microglia are particularly susceptible to metabolic disturbances. While C9orf72 motor neurons exhibited impaired mitochondrial respiration and reduced ATP production, C9orf72 microglia presented pronounced increases in glycolytic activity and oxidative stress, accompanied by the upregulation of the expression of key metabolic enzymes. These metabolic changes in microglia were exacerbated by inflammatory stimuli. To investigate how these changes affect the broader cellular environment, we developed a human iPSC-derived triculture system comprising motor neurons, astrocytes, and microglia. This model revealed increased metabolic activity in all cell types and highlighted that microglia-driven metabolic reprogramming in astrocytes contributes to the vulnerability of motor neurons under inflammatory conditions. Our findings highlight the central role of microglia in driving metabolic dysregulation and intercellular crosstalk in ALS pathogenesis and suggest that targeting metabolic pathways in immune cells may provide new therapeutic avenues.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.70080","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The C9orf72 hexanucleotide repeat expansion mutation is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but its cell type-specific effects on energy metabolism and immune pathways remain poorly understood. Using induced pluripotent stem cell (iPSC)-derived motor neurons, astrocytes, and microglia from C9orf72 patients and their isogenic controls, we investigated metabolic changes at the single-cell level under basal and inflammatory conditions. Our results showed that microglia are particularly susceptible to metabolic disturbances. While C9orf72 motor neurons exhibited impaired mitochondrial respiration and reduced ATP production, C9orf72 microglia presented pronounced increases in glycolytic activity and oxidative stress, accompanied by the upregulation of the expression of key metabolic enzymes. These metabolic changes in microglia were exacerbated by inflammatory stimuli. To investigate how these changes affect the broader cellular environment, we developed a human iPSC-derived triculture system comprising motor neurons, astrocytes, and microglia. This model revealed increased metabolic activity in all cell types and highlighted that microglia-driven metabolic reprogramming in astrocytes contributes to the vulnerability of motor neurons under inflammatory conditions. Our findings highlight the central role of microglia in driving metabolic dysregulation and intercellular crosstalk in ALS pathogenesis and suggest that targeting metabolic pathways in immune cells may provide new therapeutic avenues.

C9orf72重复扩增诱导人ipsc衍生的小胶质细胞代谢功能障碍并调节胶质-神经元串扰。
C9orf72六核苷酸重复扩增突变是肌萎缩性侧索硬化症(ALS)和额颞叶痴呆最常见的遗传原因,但其细胞类型特异性对能量代谢和免疫途径的影响尚不清楚。利用来自C9orf72患者及其等基因对照的诱导多能干细胞(iPSC)衍生的运动神经元、星形胶质细胞和小胶质细胞,我们研究了基础和炎症条件下单细胞水平的代谢变化。我们的研究结果表明,小胶质细胞特别容易受到代谢紊乱的影响。C9orf72运动神经元线粒体呼吸功能受损,ATP生成减少,而C9orf72小胶质细胞糖酵解活性和氧化应激显著增加,并伴有关键代谢酶表达上调。炎症刺激加剧了小胶质细胞的这些代谢变化。为了研究这些变化如何影响更广泛的细胞环境,我们开发了一个人类ipsc衍生的三培养系统,包括运动神经元、星形胶质细胞和小胶质细胞。该模型揭示了所有细胞类型的代谢活性增加,并强调了星形胶质细胞中小胶质细胞驱动的代谢重编程有助于运动神经元在炎症条件下的易感性。我们的研究结果强调了小胶质细胞在ALS发病机制中驱动代谢失调和细胞间串扰的核心作用,并表明靶向免疫细胞中的代谢途径可能提供新的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信