共享谱系,不同结果:Yap和Taz缺失在不破坏GnRH-1迁移的情况下对雪旺和嗅鞘细胞发育有不同的影响。

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Glia Pub Date : 2025-10-01 Epub Date: 2025-07-09 DOI:10.1002/glia.70057
Ed Zandro M Taroc, Enrico Amato, Alexis M Semon, Nikki Dolphin, Briane Beck, Sophie Belin, Yannick Poitelon, Paolo E Forni
{"title":"共享谱系,不同结果:Yap和Taz缺失在不破坏GnRH-1迁移的情况下对雪旺和嗅鞘细胞发育有不同的影响。","authors":"Ed Zandro M Taroc, Enrico Amato, Alexis M Semon, Nikki Dolphin, Briane Beck, Sophie Belin, Yannick Poitelon, Paolo E Forni","doi":"10.1002/glia.70057","DOIUrl":null,"url":null,"abstract":"<p><p>Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest and are critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10-Cre mice to conditionally ablate Yap and Taz in the migrating neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression in Schwann cells (SCs), melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":"2077-2097"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration.\",\"authors\":\"Ed Zandro M Taroc, Enrico Amato, Alexis M Semon, Nikki Dolphin, Briane Beck, Sophie Belin, Yannick Poitelon, Paolo E Forni\",\"doi\":\"10.1002/glia.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest and are critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10-Cre mice to conditionally ablate Yap and Taz in the migrating neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression in Schwann cells (SCs), melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\" \",\"pages\":\"2077-2097\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/glia.70057\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.70057","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

嗅鞘细胞(Olfactory enshea鞘细胞,OECs)是起源于神经嵴的神经胶质细胞,是将嗅觉轴突捆绑到大脑的关键细胞。它们的发育对促性腺激素释放激素-1 (GnRH-1)神经元的迁移至关重要,而GnRH-1神经元对青春期和生育至关重要。oec作为中枢神经系统病变的潜在治疗靶点已经引起了人们的兴趣,尽管它们的发展尚不完全清楚。我们对小鼠胚胎鼻组织的单细胞RNA测序表明,oec和雪旺细胞有一个共同的起源,来自雪旺细胞前体,但表现出显著的遗传差异。转录因子Yap和Taz先前已被证明在雪旺细胞发育中起着至关重要的作用。我们使用Sox10-Cre小鼠有条件地消融迁移神经嵴及其衍生物中的Yap和Taz。我们的分析显示,沿鼻区神经的Sox10+胶质细胞减少,雪旺细胞(SCs)、黑素细胞和OECs的基因表达改变,鼻峰鼻器官的嗅觉感觉神经元和血管化显著减少。然而,尽管有这些变化,GnRH-1神经元迁移仍未受到影响。我们的研究结果强调了Hippo通路在OEC发育中的重要性,以及颅神经嵴衍生物的变化如何间接影响嗅上皮的发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration.

Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest and are critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10-Cre mice to conditionally ablate Yap and Taz in the migrating neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression in Schwann cells (SCs), melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信