Robert A Guyer, Samson Marty, Chris Marone, Paul A Johnson, Christopher W Johnson
{"title":"On the anatomy of acoustic emission.","authors":"Robert A Guyer, Samson Marty, Chris Marone, Paul A Johnson, Christopher W Johnson","doi":"10.1121/10.0034637","DOIUrl":"https://doi.org/10.1121/10.0034637","url":null,"abstract":"<p><p>Abrupt, local frictional fault failure comprises a displacement that is normally accompanied by acoustic emission (AE)-an impulsive elastic wave broadcast with an amplitude proportional to particle velocity. The aggregate of these displacements is the basic fault motion. In laboratory shear experiments, the examination of a sequence of laboratory earthquakes includes continuous measurements of fault motion and the associated AE that is broadcast. From these measurements, connections between the fault motion and cumulative sum of the AE amplitude can be identified. The composition of the AE broadcasts reveals inhomogeneity in the fault mechanical structure from which they arise. This inhomogeneity can be decomposed into a time invariant AE component and an articulated AE component. The articulated AE component serves as a \"state of the fault diagnostic\" that follows a distinctive pattern to fault failure. Thus, the articulated AE component can be used directly to monitor the state of the fault.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4116-4122"},"PeriodicalIF":2.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A general analogy mass-spring system analytical model for sound reduction of side-branch resonators.","authors":"Jiaming Li, Bowen Huang, Hae Chang Gea","doi":"10.1121/10.0034633","DOIUrl":"https://doi.org/10.1121/10.0034633","url":null,"abstract":"<p><p>This study introduces a general analytical model designed to predict the sound reduction frequency of side-branch resonators, regardless of their geometric shapes. Grounded in a continuous analogy mass-spring system, we conceptualize the air within the branch cavity of the resonator as a series of infinitesimal continuous air layers. Each air layer is represented as a mass-spring unit, influenced by the pressure distribution inside the branch cavity. These mass-spring units, following mass conservation principles, are systematically transformed into planar configurations and stacked in a singular direction. These stacked mass-spring units are then converted into an effective one-dimensional mass-spring. Standing wave and the conservation of energy are employed to determine the natural frequency of the effective one-dimensional mass-spring, which corresponds to the sound reduction frequency of the side-branch resonator. This analytical model offers precise predictions for the sound reduction frequencies of side-branch resonators, regardless of their geometric variations. The analytical model can help designers design side-branch resonators in various shapes that accurately target specific sound reduction frequencies in real-world applications. Our analytical model's predictions for sound reduction frequencies were benchmarked against simulations from COMSOL 5.4. The comparative analysis demonstrates the adaptability of the proposed analogy mass-spring system model to side-branch resonators of varied geometric designs. Furthermore, the model exhibits both high predictive accuracy and robustness. Further details and examples will be elaborated upon subsequently.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4153-4168"},"PeriodicalIF":2.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep water characteristics of electrodynamic transducers based on distributed-parameter equivalent circuit of acoustic cavity.","authors":"Yongjie Sang, Yishuang Zhang, Shuai Wu","doi":"10.1121/10.0034419","DOIUrl":"https://doi.org/10.1121/10.0034419","url":null,"abstract":"<p><p>The source level of the electrodynamic transducer with a passive pressure compensation airbag in ultra-low frequencies (bands below 100 Hz) decreases sharply with the increase in working depth. A theoretical model with a distributed-parameter equivalent circuit of the acoustic cavity was proposed to explore the mechanism of this phenomenon and find a way to improve the ultra-low frequency source level in deep water (over 200 m). The results indicate that the decrease in acoustic compliance of the cavity in deep water leads to an increase in resonant frequency, resulting in a decrease in source level in the ultra-low frequency band. The resonance frequency in deep water shows differences based on distributed and lumped parameter models. The resonance frequency test results of the prototype show that the theoretical results based on a distributed-parameter model proposed in this study are more consistent with the test values. The effects of the acoustic cavity's structural size, the acoustic parameters of the gas in the cavity, and the active pressure compensation method on the source level at different depths were analyzed. Results reveal that the acoustic performance in ultra-low frequency bands at large depths can be markedly improved using the active pressure compensation method.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3384-3395"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning and consolidating the contextualized contour representations of tones from F0 sequences and durational variations via transformers.","authors":"Yi-Fen Liu, Xiang-Li Lu","doi":"10.1121/10.0034359","DOIUrl":"https://doi.org/10.1121/10.0034359","url":null,"abstract":"<p><p>Many speech characteristics, including conventional acoustic features such as mel frequency cepstrum coefficients and mel-spectrograms, as well as pre-trained contextualized acoustic representations such as wav2vec2.0, are used in a deep neural network or successfully fine-tuned with a connectionist temporal classification for Mandarin tone classification. In this study, the authors propose a transformer-based tone classification architecture, TNet-Full, which uses estimated fundamental frequency (F0) values and aligned boundary information on syllables and words. Key components of the model framework are the contour encoder and rhythm encoder, as well as the cross-attention between contours and rhythms established in the interaction encoder. Using contextual tonal contours as a reference, as well as rhythmic information derived from duration variations to consolidate more on contour representations for tone recognition, TNet-Full achieves absolute performance improvements of 24.4% for read speech (from 71.4% to 95.8%) and 6.3% for conversational speech (from 52.1% to 58.4%) when compared to a naive, simple baseline transformer, TNet-base. The relative improvements are 34.2% and 12.1%. As humans perceive tones, contour abstractions of tones can only be derived from F0 sequences, and tone recognition would be improved if syllable temporal organization was stable and predictable instead of fluctuating as seen in conversations.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3353-3372"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Line spectrum tracking method in transformed signal space for underwater moving targets in low signal-to-noise ratio environment.","authors":"Yunjia Shi, Shengchun Piao, Junyuan Guo","doi":"10.1121/10.0034356","DOIUrl":"https://doi.org/10.1121/10.0034356","url":null,"abstract":"<p><p>Line spectrum tracking is an essential signal-processing method for underwater passive detection. However, its performance is often seriously degraded due to signal fluctuation, especially in low signal-to-noise ratio scenarios. In this paper, based on signal space transformation and hidden Markov model, a signal trajectory tracking method is proposed for underwater moving target detection and parameter estimation. With this method, tracking the varying line spectrum trajectory in three-dimensional frequency-azimuth-time signal space is constrained onto a two-dimensional plane in the transformed signal space. Not only is the computation complexity reduced, but the ability to track weak line spectrums and estimate target parameters is improved. The performance of this method is verified with numerical simulations and experimental data processing.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3320-3337"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Realization of Airy pattern acoustic bullets by depth of focus synthesis.","authors":"Shenggeng Wang, Weicheng Zheng, Zengtao Yang, Qingli Zhou","doi":"10.1121/10.0034234","DOIUrl":"https://doi.org/10.1121/10.0034234","url":null,"abstract":"<p><p>Energy concentration is a key parameter for the characterization of light or acoustic bullets. To the best of our knowledge, the highest encircled-energy ratio in the mainlobe reported is merely 25% for the solitary bullet waves and 30% for the nonsolitary bullet waves. This letter reports experimentally and theoretically on a new family of acoustic bullets, namely, Airy pattern ultrasonic bullets, realized by the depth of focus synthesis. The Airy pattern ultrasonic bullets, regarded as a beam with an ultra-long depth of focus, exhibit Airy pattern energy distribution and contain 83.8% of total energy in their mainlobe. In the depth of focus synthesis proposed, an ultra-long depth of focus could be longitudinally synthesized by successive acoustic foci by using an acoustic reflection cavity (ARC). In contrast to the well-known aperture synthesis which utilizes a platform motion to extend the aperture, the depth of focus synthesis employs multiple reflections in ARC to extend its physical dimensions. The Airy pattern ultrasonic bullets presented would be potentially useful in long-range ultrasound imaging, ultrasonic therapy, and acoustic wireless energy transmission.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3033-3038"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using articulatory feature detectors in progressive networks for multilingual low-resource phone recognitiona).","authors":"Mahir Morshed, Mark Hasegawa-Johnson","doi":"10.1121/10.0034415","DOIUrl":"10.1121/10.0034415","url":null,"abstract":"<p><p>Systems inspired by progressive neural networks, transferring information from end-to-end articulatory feature detectors to similarly structured phone recognizers, are described. These networks, connecting the corresponding recurrent layers of pre-trained feature detector stacks and newly introduced phone recognizer stacks, were trained on data from four Asian languages, with experiments testing the system on those languages and four African languages. Later adjustments of these networks include the use of contrastive predictive coding layers at the inputs to those networks' recurrent portions. Such adjustments allow for performance differences to be attributed to the presence or absence of individual feature detectors (for consonant place/manner and vowel height/backness). Some of these differences manifest after feature-level comparisons of recognizer outputs, as well as through considering variations and ablations in architecture and training setup. These differences encourage further exploration of methods to reduce errors with phones having specific articulatory features as well as further architectural modifications.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3411-3421"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of speaking style and semantic predictability on vowel production.","authors":"Yujin Song, Cynthia G Clopper","doi":"10.1121/10.0034446","DOIUrl":"https://doi.org/10.1121/10.0034446","url":null,"abstract":"<p><p>Listener-oriented accounts of phonetic enhancement propose that talkers produce enhanced vowels to increase clarity when their interlocutor might experience communicative difficulty, e.g., for non-native interlocutors or for an unpredictable word given the semantic context. While style-driven enhancement has been shown to be a listener-oriented modification, it is less clear if semantic predictability effects are implemented by the same mechanism. Using three listener conditions, in which listeners varied in language proficiency, and two predictability contexts, the current study investigated how talkers tailor their speech to accommodate the varying proficiencies of their listeners and to what extent semantic predictability effects can interact with listener-oriented processes. Talkers produced longer and more dispersed vowels when talking to the low-proficiency non-native listener relative to the native and high-proficiency non-native listeners. Further, vowels were longer in low predictability contexts relative to high predictability contexts. Finally, talkers increased vowel F2 in low predictability contexts relative to high predictability contexts only for the low-proficiency non-native listener. No differences were found for the native and high-proficiency non-native listeners. The findings suggest that assessment of listeners' needs affects phonetic enhancement, and listener-oriented processes may influence predictability effects for at least some acoustic measures in some conditioning contexts.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3621-3631"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified analytical model for predicting the nonlinear acoustic characteristics of perforated sound-absorption structures at high sound pressures.","authors":"Wenjiong Chen, Yipu Wang, Shutian Liu","doi":"10.1121/10.0034428","DOIUrl":"https://doi.org/10.1121/10.0034428","url":null,"abstract":"<p><p>This paper presents a modified model for predicting the nonlinear acoustic characteristics of a microperforated plate at high sound pressure levels with increased accuracy of PARK Model. Based on PARK Model, the acoustic impedance of the cavity behind the plate is taken into account in the equivalent circuit to adjust the velocity in the perforations. The modified model was compared with the previous model to verify its accuracy at high sound pressure levels. Furthermore, to establish that the proposed model also has higher accuracy when considering perforated structures with complex cavities, a four-unit coupled structure (FUCS) composed of four coiled-up space channels was constructed. A finite-element model was used to verify the accuracy of our proposed model. This confirmed that our model calculates the sound-absorption coefficient and average particle velocity in the microholes more accurately than several other models at 155 dB. Experimental assessments of the sound-absorption performance of the FUCS within the 300-1900 Hz range confirmed the accuracy of the model. When considering perforated sound-absorption structures at high sound pressure levels, this model is more accurate than PARK's Model and, therefore, has potential application value in relation to the extreme noise fields experienced in aerospace applications.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3396-3410"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fraser T Watt, Andreas Hauptmann, Eleanor C Mackle, Edward Z Zhang, Paul C Beard, Erwin J Alles
{"title":"Non-iterative model-based inversion for low channel-count optical ultrasound imaginga).","authors":"Fraser T Watt, Andreas Hauptmann, Eleanor C Mackle, Edward Z Zhang, Paul C Beard, Erwin J Alles","doi":"10.1121/10.0034450","DOIUrl":"10.1121/10.0034450","url":null,"abstract":"<p><p>Ultrasound image reconstruction is typically performed using the computationally efficient delay-and-sum algorithm. However, this algorithm is suboptimal for systems of low channel counts, where it causes significant image artefacts. These artefacts can be suppressed through model-based inversion approaches; however, their computational costs typically prohibit real-time implementations. In this work, the emerging optical ultrasound (OpUS) modality is considered, where ultrasound waves are both generated and detected using light. With this modality, imaging probes comprise very low channel counts, resulting in significant image artefacts that limit the imaging dynamic range. However, this low channel counts offer an opportunity for non-iterative (\"direct\") model-based inversion (DMI) on modest computational resources available in a typical workstation. When applied to both synthetic and experimental OpUS data, the presented DMI method achieved substantial reduction in image artefacts and noise, improved recovery of image amplitudes, and-after one-off pre-computation of the system matrices-significantly reduced reconstruction time, even in imaging scenarios exhibiting mild spatial inhomogeneity. Whilst here applied to an OpUS imaging system, DMI can be applied to other low channel-count imaging systems, and is therefore expected to achieve better image quality, reduce system complexity, or both, in a wide range of settings.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3514-3522"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}