Jenna Hare, Anthony P Lyons, Matthew Catoire, Gabriel R Venegas
{"title":"Measurements of temporal variability of acoustic scattering from the seafloor in shallow-water sandy sites.","authors":"Jenna Hare, Anthony P Lyons, Matthew Catoire, Gabriel R Venegas","doi":"10.1121/10.0030464","DOIUrl":"https://doi.org/10.1121/10.0030464","url":null,"abstract":"<p><p>In the ocean, the performance of active sonar systems depends on the acoustic properties of the seafloor. Daily to monthly variations in near-bottom hydrodynamics and benthic biological activity may affect seafloor properties which then influence the acoustic response of the seafloor. The dependence of seafloor scatter on evolving environmental parameters was investigated using high-frequency active acoustic systems. Seafloor scattering measurements were analyzed in a series of experiments (two weeks to five months in duration) from downward-looking sonars oriented at 20° grazing angle with respect to the seafloor. Data were obtained in two shallow water locations near Portsmouth, New Hampshire, USA: a wave-dominated site and a site dominated by tidal currents. The bottom type for both sites was gravelly sand. The experimental set-up consisted of a tripod placed on the seafloor equipped with three transducers operating at 38, 70, and 200 kHz, a wave-sensing CTD, and underwater cameras. Scattering strength time series were obtained taking into account the local seafloor slope. Results show that there is variability in scattering strength (both in mean levels and distributions). Large variations often coincided with storm events, suggesting that this variability may be driven by changes in bottom roughness caused by storm-related hydrodynamics.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miad Al Mursaline, Timothy K Stanton, Andone C Lavery
{"title":"Acoustic scattering by smooth and rough elastic cylinders insonified by directional sonars: Bistatic experiments.","authors":"Miad Al Mursaline, Timothy K Stanton, Andone C Lavery","doi":"10.1121/10.0028677","DOIUrl":"https://doi.org/10.1121/10.0028677","url":null,"abstract":"<p><p>Bistatic laboratory measurements are presented for acoustic scattering from both smooth and rough elastic cylinders insonified by directional spherical waves. A scattering model, accounting for incident directional spherical waves while assuming negligible end effects, was derived in a previous article [Mursaline, Stanton, Lavery, and Fischell, J. Acoust. Soc. Am. 154, 307-322 (2023)] but only evaluated for monostatic scattering by smooth cylinders. The evaluation is extended here to bistatic geometries for both smooth and rough cylinders. The effect of axi-symmetric Gaussian roughness (axi-symmetric random variations in cylinder radius) on the cylinder on overall scattering levels and resonances is investigated. Particular emphasis is given to the influence of roughness on the excitation of axially propagating guided wave resonances associated with oblique incident angles. Bistatic laboratory observations presented herein further substantiate the effects on scattering due to the properties of the incident field from practical sonars, such as spherical spreading, as observed in the above-mentioned article. For smooth cylinders, axially propagating guided wave resonances are seen to become more prominent during bistatic in-plane scattering compared to bistatic orthogonal-plane scattering and previously published monostatic data. For rough cylinders, both overall scattering levels and resonances are found to be diminished compared to the smooth case.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous acoustic metamaterial for simultaneous control of high and low frequency machinery noise: Case study of a water pump.","authors":"Golakoti Pavan, Sneha Singh","doi":"10.1121/10.0032453","DOIUrl":"10.1121/10.0032453","url":null,"abstract":"<p><p>An acoustic metamaterial (AMM) consisting of a porous material (melamine foam) layer above a symmetrical labyrinthine metamaterial, incorporating a micro-hole and micro-slit cover plate, is proposed to simultaneously mitigate low and high frequency noise from industrial machineries. Theoretical model of sound absorption by this AMM is developed and validated numerically and experimentally. Sensitivity analysis indicates that increasing the length of the labyrinthine pathway and cover plate thickness and decreasing the slit width, slit length, and hole diameter shifts the peak sound absorption to lower frequencies. This material is successfully applied as a sound absorptive enclosure of a 0.5 hp water pump to reduce its sound pressure levels across widely separated frequencies of 1414-2245 Hz (high frequency) and 176-222 Hz (low frequency). This study offers guidelines to noise control engineers for controlling low and high frequency noise in industrial machineries.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klaus Lucke, Alexander O MacGillivray, Michele B Halvorsen, Michael A Ainslie, David G Zeddies, Joseph A Sisneros
{"title":"Recommendations on bioacoustical metrics relevant for regulating exposure to anthropogenic underwater sounda).","authors":"Klaus Lucke, Alexander O MacGillivray, Michele B Halvorsen, Michael A Ainslie, David G Zeddies, Joseph A Sisneros","doi":"10.1121/10.0028586","DOIUrl":"https://doi.org/10.1121/10.0028586","url":null,"abstract":"<p><p>Metrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna. Existing regulations have primarily focused on marine mammals and are based on the dichotomy of sound types as being either impulsive or non-impulsive. This classification of sound types, however, is overly simplistic and insufficient for adequate impact assessments of sound on animals. It is recommended that the definition of impulsiveness be refined by incorporating kurtosis as an additional parameter and applying an appropriate conversion factor. Auditory frequency weighting functions, which scale the importance of particular sound frequencies to account for an animal's sensitivity to those frequencies, should be applied. Minimum phase filters are recommended for calculating weighted sound pressure. Temporal observation windows should be reported as signal duration influences its detectability by animals. Acknowledging that auditory integration time differs across species and is frequency dependent, standardized temporal integration windows are proposed for various signal types.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear-acoustic effects of asymmetrical undercutting of toneholes of woodwind instruments.","authors":"Roman Gerasimov","doi":"10.1121/10.0032397","DOIUrl":"https://doi.org/10.1121/10.0032397","url":null,"abstract":"<p><p>The influence of the presence and magnitude of asymmetrical undercutting of the toneholes of woodwind instruments on the change in their effective radius and the corresponding shift of the eigenfrequencies of the air duct is considered. Within the framework of the electro-acoustic analogy, a tonehole with an asymmetrical undercutting along the axis of the main bore is presented as a cascade connection of two holes with different radii (undercutting and not undercutting parts of the hole), and with a sideway undercutting-in the form of a parallel connection. Formulas for numerical calculations are given that make it possible to determine the effective radius of such holes for the open state in the low-frequency approximation. Based on the obtained dependencies, using the transmission-matrix method, the eigenfrequencies of an air duct with one hole were calculated and compared with the results of computer modeling in the COMSOL Multiphysics 5.6 program. It is shown that increasing the degree and angle of undercutting leads to an increase in the effective radius, a displacement of the \"center of gravity\" of the sound hole along the main bore axis, and has effect on the shift of resonant frequency.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason Mulsow, Carolyn E Schlundt, Madelyn G Strahan, James J Finneran
{"title":"Erratum: Bottlenose dolphin temporary threshold shift following exposure to 10-ms impulses centered at 8 kHz [J. Acoust. Soc. Am. 154(2), 1287-1298 (2023)].","authors":"Jason Mulsow, Carolyn E Schlundt, Madelyn G Strahan, James J Finneran","doi":"10.1121/10.0032468","DOIUrl":"https://doi.org/10.1121/10.0032468","url":null,"abstract":"","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase stability of convergence zone propagation at mid-frequency.","authors":"F Hunter Akins, William S Hodgkiss, W A Kuperman","doi":"10.1121/10.0032359","DOIUrl":"https://doi.org/10.1121/10.0032359","url":null,"abstract":"<p><p>Mid-frequency transmissions (1.5 to 7.5 kHz) from a towed source to a drifting array one convergence zone away demonstrate smoothly varying phase. Calculations of the strength and diffraction parameters Φ and Λ for a representative background environment predict partially saturated propagation. For a single convergence zone path, the evolving phase rate due to the changing internal wave field corresponds to a narrowband coherent integration time, defined by the length of a discrete Fourier transform that likely captures the signal, from ∼370 s at 10 kHz to ∼1370 s at 1 kHz in the absence of source motion. Simulated propagation with a split-step parabolic equation solver through a sound speed field with thermocline fine structure and a Garrett-Munk internal wave displacement field provides a full wave picture that is consistent with the statistical predictions. Experimental data from the Philippine Sea demonstrates signal phase that is highly correlated with source tow body vertical excursions, measured by a pressure sensor, that couple into horizontal motion. The received signal can be integrated for up to 128 s at 5.5 kHz, with the upper limit thought to be due to non-uniform source motion rather than ocean dynamics.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jenna Rutowski, Tre DiPassio, Benjamin R Thompson, Mark F Bocko, Michael C Heilemann
{"title":"Estimating direction of arrival in reverberant environments for wake-word detection using a single structural vibration sensora).","authors":"Jenna Rutowski, Tre DiPassio, Benjamin R Thompson, Mark F Bocko, Michael C Heilemann","doi":"10.1121/10.0032367","DOIUrl":"https://doi.org/10.1121/10.0032367","url":null,"abstract":"<p><p>The vibrational response of an elastic panel to incident acoustic waves is determined by the direction-of-arrival (DOA) of the waves relative to the spatial structure of the panel's bending modes. By monitoring the relative modal excitations of a panel immersed in a sound field, the DOA of the source may be inferred. In reverberant environments, early acoustic reflections and the late diffuse acoustic field may obscure the DOA of incoming sound waves. Panel microphones may be especially susceptible to the effects of reverberation due to their large surface areas and long-decaying impulse responses. An investigation into the effect of reverberation on the accuracy of DOA estimation with panel microphones was made by recording wake-word utterances in eight spaces with reverberation times (RT60s) ranging from 0.27 to 3.00 s. The responses were used to train neural networks to estimate the DOA. Within ±5°, DOA estimation reliability was measured at 95.00% in the least reverberant space, decreasing to 78.33% in the most reverberant space, suggesting an inverse relationship between RT60 and DOA accuracy. Experimental results suggest that a system for estimating DOA with panel microphones can generalize to new acoustic environments by cross-training the system with data from multiple spaces with different RT60s.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting the sound absorption mechanisms of a finite flexible perforated panel absorber using a numerical approach.","authors":"Jiaxing Li, Peidong Zhao, Peng Wang, Cheng Yang","doi":"10.1121/10.0032363","DOIUrl":"https://doi.org/10.1121/10.0032363","url":null,"abstract":"<p><p>This study investigates the sound absorption mechanisms of a finite flexible perforated panel absorber. Different from existing work where the mechanisms were often investigated by comparing the sound absorption coefficient curves of different absorber configurations, a numerical approach, called virtual impedance tube (VIT) technique, is developed and used for the analysis. One advantage of this technique is the vast dataset generated can be used to investigate the sound absorption mechanisms from an energy standpoint. The developed VIT technique is first validated using the impedance tube test, where a proportion-integration-differentiation control algorithm is developed to maintain the incident sound at a desired sound pressure level. Then, the sound absorption mechanisms at three absorption peaks, i.e., hole-cavity controlled, panel-cavity controlled, and panel controlled, are investigated and the dominant energy dissipation mechanism at different sound pressure levels (SPLs) is revealed. Finally, an impedance model that takes account of the panel vibration and is applicable to various SPLs is proposed and validated.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding the dancing of the tongue: A model-based learning approach to phonetic targets in coarticulationa).","authors":"Jianguo Wei, Guochen Bai, Wenhuan Lu, Jianwu Dang","doi":"10.1121/10.0032362","DOIUrl":"https://doi.org/10.1121/10.0032362","url":null,"abstract":"<p><p>A model synthesizing average frequency components from select sentences in an electromagnetic articulography database has been crafted. This revealed the dual roles of the tongue: its dorsum acts like a carrier wave, and the tip acts as a modulation signal within the articulatory realm. This model illuminates anticipatory coarticulation's subtleties during speech planning. It undergoes rigorous, two-stage optimization: statistical estimation and refinement to depict carryover and anticipation. The model's base, rooted in physiological insights, deciphers carryover targets while its upper layer captures anticipation. Optimization has pinpointed unique phonetic targets for each phoneme, providing deep insights into virtual target formation during speech planning. These simulations, aligning closely with empirical data and marked by a mere 0.18 cm average error, along with extensive listening tests attest to the model's accuracy and enhanced speech synthesis quality.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}