Yang Qu, Hongjie Luo, Zekun Zhi, Jinbo Qiao, Linli Wu
{"title":"Carbothermal Reduction of Oil Shale Residue (OSR) in DC Electric Furnace to Prepare Si–Al–Fe Alloy","authors":"Yang Qu, Hongjie Luo, Zekun Zhi, Jinbo Qiao, Linli Wu","doi":"10.1007/s40831-024-00826-1","DOIUrl":"https://doi.org/10.1007/s40831-024-00826-1","url":null,"abstract":"<p>The growing scarcity of conventional oil resources has intensified the focus on shale oil, known for its abundant reserves. Nevertheless, in the process of shale oil retorting, a substantial quantity of harmful waste oil shale residue (OSR) is generated. In this study, OSR and bituminous coal sourced from Fushun City served as the raw materials for the production of Si–Al–Fe alloy in a DC electric arc furnace, proposing a novel way to efficiently utilize OSR. The experiment summarized and analyzed the current oxide reduction theory, combined with the actual experimental results, focused on investigating the phase transformations of OSR during the reduction process. Based on the gaseous suboxide-carbide reaction theory, the reduction mechanism of pellet raw materials at high temperature was proposed. Results showed that the pellet raw materials will first undergo high temperature decomposition during the reduction process, and generated a large amount of carbides. Carbides subsequently reacted with metal suboxides produced in the high-temperature zone of the electric arc furnace to yield alloys. The element distribution of the obtained alloy product was non-uniform, the metallic Si phase was closely adjacent to the SiC substance, and the Fe in the alloy significantly enriched the reduced Al and Ti elements.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"213 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sen Zhou, Mouhamadou A. Diop, Bingliang Gao, Zhaowen Wang, Xianwei Hu, Youjian Yang, Wenju Tao
{"title":"Enhancing Sustainability in Aluminum Reduction Cells Through Cathode Repair Optimization and Numerical Simulations Study on Current Distribution and Erosion Hole Impact","authors":"Sen Zhou, Mouhamadou A. Diop, Bingliang Gao, Zhaowen Wang, Xianwei Hu, Youjian Yang, Wenju Tao","doi":"10.1007/s40831-024-00803-8","DOIUrl":"https://doi.org/10.1007/s40831-024-00803-8","url":null,"abstract":"<p>The present study investigates the impact of erosion holes and subsequent repairs on the current distribution at the cathode-metal interface in aluminum reduction cells. The research focuses on examining the effects of erosion hole location, size, repair material properties, and the modification of cathode collector bars to optimize cathode repair strategies. The findings indicate that erosion holes lead to a localized concentration of current distribution in the metal at the erosion site. Notably, the maximum current density observed reaches 46125 A/m<sup>2</sup>, and the maximum horizontal current in the lateral cell direction at the cathode-metal interface increases with the depth of the erosion hole. Furthermore, the study reveals that the electrical conductivity of repair materials significantly influences current distribution. Materials with high resistivity behave similarly to insulators. Post-repair actions, including the cutting off of the collector bar, result in a noticeable reduction in current density, with a maximum horizontal current of 5860 A/m<sup>2</sup>. These results provide valuable insights into optimizing cathode repair processes, offering implications for enhancing aluminum reduction cells' efficiency, productivity, and cost-effectiveness.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"77 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Na2O and CaCl2 on the Crystallization and Mechanical Properties of CaO-MgO-Al2O3-SiO2 Glass–Ceramics","authors":"Hong-Yang Wang, Yu Li, Shu-Qiang Jiao, Guo-Hua Zhang","doi":"10.1007/s40831-024-00819-0","DOIUrl":"https://doi.org/10.1007/s40831-024-00819-0","url":null,"abstract":"<p>In this paper, we respectively added 5 wt% of Na<sub>2</sub>O and CaCl<sub>2</sub> to the CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> base glass, aiming to analyze the effect of the types of flux, CaCl<sub>2</sub>, and traditional flux Na<sub>2</sub>O, on the crystallization behavior and mechanical properties of the sintered glass–ceramics. Besides, 1 wt% of Cr<sub>2</sub>O<sub>3</sub> was added as the nucleating agent to form the Cr-spinel nucleus and promote the bulk crystallization. The CaCl<sub>2</sub>-bearing glass–ceramics (GC-Cl) showed lower porosity and crystallinity compared with the Na<sub>2</sub>O-bearing glass–ceramics (GC-Na). After sintering at 950 °C for 1 h, the bending strength, Vickers hardness, and fracture toughness of GC-Cl were 163 MPa, 6.9 GPa, and 2.4 MPa·m<sup>1/2</sup>, respectively, while they are 191 MPa, 8.2 GPa, and 2.3 MPa·m<sup>1/2</sup> for the GC-Na. Although the bending strength and hardness of GC-Cl are lower than that of GC-Na, adding CaCl<sub>2</sub> as a flux may provide a route for the comprehensive utilization of CaCl<sub>2</sub>-bearing wastes.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"33 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conversion of Lithium Chloride into Lithium Hydroxide Using a Two-Step Solvent Extraction Process in an Agitated Kühni Column","authors":"Nand Peeters, Sofía Riaño, Koen Binnemans","doi":"10.1007/s40831-024-00815-4","DOIUrl":"https://doi.org/10.1007/s40831-024-00815-4","url":null,"abstract":"<p>A significant consequence of the green transition is the growing demand of lithium-ion batteries (LIBs), as they are essential for electrical vehicles. In turn, the demand for the raw materials that are needed to produce LIBs is increasing. A common LIB cathode type for electrical cars is lithium nickel manganese cobalt oxide (NMC). Since cobalt is currently considered as a critical raw material, nickel-rich NMC cathodes are now designed with lower cobalt contents. The synthesis of these new NMC types requires LiOH instead of Li<sub>2</sub>CO<sub>3</sub>, which was used for Co-richer NMC materials in the past. Most production routes of LiOH start from Li<sub>2</sub>CO<sub>3</sub> or Li<sub>2</sub>SO<sub>4</sub>. However, LiCl could also be a potential precursor for LiOH, as it could be obtained from various lithium sources. A two-step solvent extraction process (SX) was developed for direct conversion of LiCl into LiOH, using a phenol (butylhydroxytoluene or BHT) and a mixture of quaternary ammonium chlorides (Aliquat 336) in an aliphatic diluent (Shellsol D70) as the solvent. The SX process was validated in counter-current mode using a rotary agitated Kühni extraction column. The use of a column instead of mixer-settlers reduced the CO<sub>2</sub> uptake by the final product (LiOH), which prevented the partial conversion of LiOH to Li<sub>2</sub>CO<sub>3</sub>. A total of 75 L of LiCl feed solution was processed in the Kühni column to obtain a solution of LiOH with a final purity of more than 99.95%, at a yield of 96%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"213 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Piumatti de Oliveira, Jonathan Tenório Vinhal, Luciana Harue Yamane, Marcela dos Passos Galluzzi Baltazar, Denise Crocce Romano Espinosa
{"title":"Extraction of Yttrium from Light-Emitting Diode Waste by Alkali Fusion Followed by Acid Leaching","authors":"Rafael Piumatti de Oliveira, Jonathan Tenório Vinhal, Luciana Harue Yamane, Marcela dos Passos Galluzzi Baltazar, Denise Crocce Romano Espinosa","doi":"10.1007/s40831-024-00814-5","DOIUrl":"https://doi.org/10.1007/s40831-024-00814-5","url":null,"abstract":"<p>Literature regarding metals recovery from LED waste mainly focuses on semiconductor materials and precious metals, lacking data about rare earth elements. This paper explores this gap presenting an experimental study of yttrium extraction from LED waste by alkali fusion/acid leaching method. For this purpose, LED samples were obtained from tubular lamp. Chemical and thermal analyses were performed. Alkali fusion preprocessing was adopted followed by nitric acid leaching to solve difficult yttrium extraction from aluminate structure of LED phosphor. A chemical reaction mechanism in the alkali fusion involving degradation of the silicone polymer and destruction of the aluminate phosphor has been proposed as a novel approach to the subsequent easy leaching of rare earths from LED waste. Fusion conditions were 700 °C, for 3 h, NaOH/LED relation 1:1. Leaching solutions and solid residue were analyzed by energy dispersive X-ray fluorescence spectrometry, induced coupled plasma optical emission spectrometry, X-ray diffractometry and Fourier transform infrared spectroscopy. It was observed the undesirable formation of silica gel in the leaching liquor processed in temperatures below 70 °C. In that way, it is recommended the leaching at 90 °C, with formation of insoluble SiO<sub>2</sub>. Optimal leaching conditions found were leaching time of 20 min, 1/20 solid/liquid ratio, with 91% yttrium extraction in HNO<sub>3</sub> 2.5 mol/L at 90 °C.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"162 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingbo Li, Li Zhou, Chenhui Liu, Yingwei Li, Jiyun Gao
{"title":"Preparation of Antimony Metal by Carbothermal Reduction of Antimony Oxide Powder in a Microwave Field: Mechanism and Process","authors":"Lingbo Li, Li Zhou, Chenhui Liu, Yingwei Li, Jiyun Gao","doi":"10.1007/s40831-024-00809-2","DOIUrl":"https://doi.org/10.1007/s40831-024-00809-2","url":null,"abstract":"<p>Antimony is often used as a hardener for alloys. There are few studies on the preparation of antimony from Sb<sub>2</sub>O<sub>3</sub> by microwave carbothermal reduction. In this study, Sb<sub>2</sub>O<sub>3</sub> was used as the raw material, and the resonant cavity perturbation method was used to select anthracite as the reducing agent according to the microwave absorption of the material mixture. The single-factor experiment of reduction temperature, reduction time, and reducing agent ratio was carried out in a microwave tube furnace. The process parameters were optimized by response surface methodology (RSM). Under the optimized conditions, the reduction temperature was 758 °C, the reduction time was 56 min, the reducing agent addition ratio was 0.123, and the molten salt addition ratio was 0.1. An antimony ingot with a yield of 92.19% and a purity of 99.45% was obtained. The products and residue of the antimony ingot were analyzed by X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), thermogravimetric (TG) analysis, scanning electron microscopy (SEM), and the mechanism of carbothermal reduction of antimony oxide powder in a microwave field was studied. The results showed that the microwave carbothermal reduction process of Sb<sub>2</sub>O<sub>3</sub> under a microwave field had three stages: 25~655 °C, 655~850 °C, and >850 °C. Different stages changed with temperature. This green and energy-saving microwave heating technology can provide a feasible method for the efficient preparation of antimony.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic Investigations for Combustion-Assisted Synthesis of Lithium Orthosilicate Powders","authors":"Kağan Benzeşik, Onuralp Yücel","doi":"10.1007/s40831-024-00811-8","DOIUrl":"https://doi.org/10.1007/s40831-024-00811-8","url":null,"abstract":"<p>The study investigates the combustion-assisted synthesis of lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>) powders for potential CO<sub>2</sub> capture applications. Technical-grade lithium carbonate and metallic silicon powders were used as starting materials. Synthesis conditions were explored across temperatures ranging from 500 to 900 °C and different holding durations. Thermodynamic modeling using FactSage 8.2 software suggested that Li<sub>4</sub>SiO<sub>4</sub> production is feasible at temperatures of 700 °C and higher with metallic silicon as the silicon source, which was confirmed experimentally. Characterization of the synthesized powders involved X-ray diffraction, specific surface area determination, particle size distribution analysis, scanning electron microscopy, and CO<sub>2</sub> uptake tests. Despite having the lowest Li<sub>4</sub>SiO<sub>4</sub> content as 83.7%, the sample synthesized at 700 °C with 45 min of holding time showed the best CO<sub>2</sub> uptake performance as 12.80 wt% while having the lowest crystallite size value (126.58 nm), the highest specific surface area value (4.975 m<sup>2</sup>/g) and the lowest average particle size value (10.85 µm) which are highly effective on the CO<sub>2</sub> uptake performance of such solid sorbents. The study concludes that while challenges remain in achieving optimal CO<sub>2</sub> capture performance, it lays a foundation for utilizing lithium orthosilicate in carbon capture applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"65 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Shemi, L. Chipise, C. S. Yah, A. Kumar, S. Moodley, K. Rumbold, G. Simate, S. Ndlovu
{"title":"Optimized Bioleaching Pre-treatment of UG-2 PGM Flotation Concentrate Using Design of Experiments","authors":"A. Shemi, L. Chipise, C. S. Yah, A. Kumar, S. Moodley, K. Rumbold, G. Simate, S. Ndlovu","doi":"10.1007/s40831-024-00800-x","DOIUrl":"https://doi.org/10.1007/s40831-024-00800-x","url":null,"abstract":"<p>The depletion of the Merensky ore has led the South African platinum industry into largely mining and processing Upper Group Two (UG-2) ore for the extraction of Platinum Group Metals (PGMs). However, the processing of the UG-2 material is not fully amenable to the conventional pyrometallurgical route due to the high chrome content. Therefore, in this study, a bio-based process for base metal extraction from UG-2 flotation concentrates was investigated. This study represents only part of the work done in a broader investigation to develop a completely biological two-stage process for the extraction of base metals and PGEs. In this paper, only the first stage of the process is presented. This study evaluated a mixture of indigenous thermoacidophile archaebacteria namely, <i>Acidianus brierleyi, Sulfolobus sp.</i>, and <i>Metallosphaera sedula</i>. A statistical Design of Experiments (DOE) was used for finding optimal conditions. Factors investigated included particle size, pH, pulp density, inoculum dosage, and temperature. Optimal extraction efficiencies of 92% for Co, 97% for Cu, and 99% for Ni were predicted at correlation coefficients of 92.5%, 93.2%, and 88.0%, respectively, thus, verifying the fitness of the model. Optimal base metal extractions obtained were 99.3% for Co, 90.1% for Cu, 41.58% for Fe, and 99.5% for Ni. The results showed a substantial extraction of base metals from UG-2 PGM flotation concentrate suggesting a potentially feasible option for industrial bioprocessing of PGM concentrates. To the best of the authors’ knowledge, this is the first report on bioleaching of base metals from UG-2 flotation concentrates.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"3 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Slag-Metal- Refractory Interactions During Dissolution of Hydrogen-Based Directly Reduced Iron (H-DRI) in Liquid Iron Melt","authors":"A. Ammasi, P. M. Rahul Karthik, D. Vishal","doi":"10.1007/s40831-024-00802-9","DOIUrl":"https://doi.org/10.1007/s40831-024-00802-9","url":null,"abstract":"<p>The steel industry is regarded as the most critical industry in the nation and is crucial to economic prosperity; however, its high energy use and carbon emissions significantly impact climate change and global warming. In view of achieving carbon neutrality, one of the most promising technologies is using green hydrogen gas as a reductant for producing carbon emission-free direct reduced iron (H-DRI) from iron ores/pellets. Moreover, the produced H-DRI is subsequently used for steel making in the induction furnace/electric arc furnace. However, the study on the melting behavior of H-DRI, interaction among slag and metal produced from H-DRI with refractory during the steel making in induction furnace/electric arc furnace has yet to be thoroughly studied. Therefore, in this study, DRI’s dissolution/melting behavior in the liquid iron at 1600 ± 10 °C has been studied. Then, interactions among slag generated during the melting/dissolution of DRI, refractory of the induction furnace, and metal produced from H-DRI have been studied using the SEM backscatter electron method. The thermodynamics modelling for the slag formation and interactions among slag-metal-refractory systems have been studied using FactSage 8.2. The penetration of iron from a liquid melt into porous refractory and the formation of complexes like mullite, spinal, and olivine has been observed. The boundaries between the slag-metal-refractory system and the dissolution of Mg and Fe have been identified using backscattered electron mode. Thermodynamics modelling has been validated with experimental observations.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"266 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Taha Osman Abdelraheem, Ali Aras, Hasan Ali Taner, Tevfik Agacayak
{"title":"Solvent Extraction of Manganese and Zinc from Chloride Leach Solution of Spent Zn–C Batteries with DEHPA in Benzene Diluent","authors":"Mohamed Taha Osman Abdelraheem, Ali Aras, Hasan Ali Taner, Tevfik Agacayak","doi":"10.1007/s40831-024-00810-9","DOIUrl":"https://doi.org/10.1007/s40831-024-00810-9","url":null,"abstract":"<p>The applicability of utilizing solvent extraction processes of manganese (Mn) and zinc (Zn) from chloride leachate of spent zinc–carbon (Zn–C) batteries has been studied by using di-2-ethylhexyl phosphoric acid (DEHPA) as an extractant agent. The effect of five factors (equilibrium pH, O/A ratio, temperature, extractant concentration, and diluent type) were investigated. According to the results gained, the appropriate solution pH level for DEHPA was found to be 6.5. With DEHPA (20%, v/v), 77.50% Mn and 100% Zn were extracted, within 15 min contact time at a 1:1 aqueous/organic ratio and 50 °C temperature. Also, a McCabe–Thiele diagram was drawn and one single-step extraction for Zn and a two-stage process for Mn were needed to achieve the highest extraction efficiency. ΔH as a thermodynamic parameter was calculated and found to be 18.39 kJ/mol for Mn and − 245.50 kJ/mol for Zn, respectively, indicating that the extraction process was endothermic for Mn and exothermic for Zn. A desirable stripping of Mn and Zn from the loaded organic phase could be obtained using a stripping solution of 6 M HCl.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"35 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}