Yang Qu, Hongjie Luo, Zekun Zhi, Jinbo Qiao, Linli Wu
{"title":"Carbothermal Reduction of Oil Shale Residue (OSR) in DC Electric Furnace to Prepare Si–Al–Fe Alloy","authors":"Yang Qu, Hongjie Luo, Zekun Zhi, Jinbo Qiao, Linli Wu","doi":"10.1007/s40831-024-00826-1","DOIUrl":null,"url":null,"abstract":"<p>The growing scarcity of conventional oil resources has intensified the focus on shale oil, known for its abundant reserves. Nevertheless, in the process of shale oil retorting, a substantial quantity of harmful waste oil shale residue (OSR) is generated. In this study, OSR and bituminous coal sourced from Fushun City served as the raw materials for the production of Si–Al–Fe alloy in a DC electric arc furnace, proposing a novel way to efficiently utilize OSR. The experiment summarized and analyzed the current oxide reduction theory, combined with the actual experimental results, focused on investigating the phase transformations of OSR during the reduction process. Based on the gaseous suboxide-carbide reaction theory, the reduction mechanism of pellet raw materials at high temperature was proposed. Results showed that the pellet raw materials will first undergo high temperature decomposition during the reduction process, and generated a large amount of carbides. Carbides subsequently reacted with metal suboxides produced in the high-temperature zone of the electric arc furnace to yield alloys. The element distribution of the obtained alloy product was non-uniform, the metallic Si phase was closely adjacent to the SiC substance, and the Fe in the alloy significantly enriched the reduced Al and Ti elements.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"213 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00826-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing scarcity of conventional oil resources has intensified the focus on shale oil, known for its abundant reserves. Nevertheless, in the process of shale oil retorting, a substantial quantity of harmful waste oil shale residue (OSR) is generated. In this study, OSR and bituminous coal sourced from Fushun City served as the raw materials for the production of Si–Al–Fe alloy in a DC electric arc furnace, proposing a novel way to efficiently utilize OSR. The experiment summarized and analyzed the current oxide reduction theory, combined with the actual experimental results, focused on investigating the phase transformations of OSR during the reduction process. Based on the gaseous suboxide-carbide reaction theory, the reduction mechanism of pellet raw materials at high temperature was proposed. Results showed that the pellet raw materials will first undergo high temperature decomposition during the reduction process, and generated a large amount of carbides. Carbides subsequently reacted with metal suboxides produced in the high-temperature zone of the electric arc furnace to yield alloys. The element distribution of the obtained alloy product was non-uniform, the metallic Si phase was closely adjacent to the SiC substance, and the Fe in the alloy significantly enriched the reduced Al and Ti elements.
传统石油资源的日益匮乏使人们更加关注储量丰富的页岩油。然而,页岩油在蒸馏过程中会产生大量有害的废油页岩渣(OSR)。本研究以抚顺市的油页岩残渣和烟煤为原料,在直流电弧炉中生产硅-铝-铁合金,提出了一种高效利用油页岩残渣的新方法。实验总结分析了现有的氧化还原理论,结合实际实验结果,重点研究了氧化还原过程中氧化还原剂的相变。基于气态亚氧化物-碳化物反应理论,提出了球团原料在高温下的还原机理。结果表明,球团原料在还原过程中首先会发生高温分解,生成大量碳化物。碳化物随后与电弧炉高温区产生的金属亚氧化物反应生成合金。所得合金产品的元素分布不均匀,金属 Si 相紧邻 SiC 物质,合金中的 Fe 显著富集了还原的 Al 和 Ti 元素。
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.