Rafael Piumatti de Oliveira, Jonathan Tenório Vinhal, Luciana Harue Yamane, Marcela dos Passos Galluzzi Baltazar, Denise Crocce Romano Espinosa
{"title":"先碱熔再酸浸从发光二极管废料中提取钇","authors":"Rafael Piumatti de Oliveira, Jonathan Tenório Vinhal, Luciana Harue Yamane, Marcela dos Passos Galluzzi Baltazar, Denise Crocce Romano Espinosa","doi":"10.1007/s40831-024-00814-5","DOIUrl":null,"url":null,"abstract":"<p>Literature regarding metals recovery from LED waste mainly focuses on semiconductor materials and precious metals, lacking data about rare earth elements. This paper explores this gap presenting an experimental study of yttrium extraction from LED waste by alkali fusion/acid leaching method. For this purpose, LED samples were obtained from tubular lamp. Chemical and thermal analyses were performed. Alkali fusion preprocessing was adopted followed by nitric acid leaching to solve difficult yttrium extraction from aluminate structure of LED phosphor. A chemical reaction mechanism in the alkali fusion involving degradation of the silicone polymer and destruction of the aluminate phosphor has been proposed as a novel approach to the subsequent easy leaching of rare earths from LED waste. Fusion conditions were 700 °C, for 3 h, NaOH/LED relation 1:1. Leaching solutions and solid residue were analyzed by energy dispersive X-ray fluorescence spectrometry, induced coupled plasma optical emission spectrometry, X-ray diffractometry and Fourier transform infrared spectroscopy. It was observed the undesirable formation of silica gel in the leaching liquor processed in temperatures below 70 °C. In that way, it is recommended the leaching at 90 °C, with formation of insoluble SiO<sub>2</sub>. Optimal leaching conditions found were leaching time of 20 min, 1/20 solid/liquid ratio, with 91% yttrium extraction in HNO<sub>3</sub> 2.5 mol/L at 90 °C.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"162 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Yttrium from Light-Emitting Diode Waste by Alkali Fusion Followed by Acid Leaching\",\"authors\":\"Rafael Piumatti de Oliveira, Jonathan Tenório Vinhal, Luciana Harue Yamane, Marcela dos Passos Galluzzi Baltazar, Denise Crocce Romano Espinosa\",\"doi\":\"10.1007/s40831-024-00814-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Literature regarding metals recovery from LED waste mainly focuses on semiconductor materials and precious metals, lacking data about rare earth elements. This paper explores this gap presenting an experimental study of yttrium extraction from LED waste by alkali fusion/acid leaching method. For this purpose, LED samples were obtained from tubular lamp. Chemical and thermal analyses were performed. Alkali fusion preprocessing was adopted followed by nitric acid leaching to solve difficult yttrium extraction from aluminate structure of LED phosphor. A chemical reaction mechanism in the alkali fusion involving degradation of the silicone polymer and destruction of the aluminate phosphor has been proposed as a novel approach to the subsequent easy leaching of rare earths from LED waste. Fusion conditions were 700 °C, for 3 h, NaOH/LED relation 1:1. Leaching solutions and solid residue were analyzed by energy dispersive X-ray fluorescence spectrometry, induced coupled plasma optical emission spectrometry, X-ray diffractometry and Fourier transform infrared spectroscopy. It was observed the undesirable formation of silica gel in the leaching liquor processed in temperatures below 70 °C. In that way, it is recommended the leaching at 90 °C, with formation of insoluble SiO<sub>2</sub>. Optimal leaching conditions found were leaching time of 20 min, 1/20 solid/liquid ratio, with 91% yttrium extraction in HNO<sub>3</sub> 2.5 mol/L at 90 °C.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00814-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00814-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
有关从 LED 废料中回收金属的文献主要集中在半导体材料和贵金属方面,缺乏有关稀土元素的数据。本文针对这一空白,介绍了通过碱熔/酸浸法从 LED 废料中提取钇的实验研究。为此,我们从管状灯中提取了 LED 样品。进行了化学和热分析。采用碱熔融预处理后硝酸浸出的方法,解决了从 LED 荧光粉的铝酸盐结构中提取钇的难题。提出了碱熔合过程中硅聚合物降解和铝酸盐荧光粉破坏的化学反应机制,作为随后从 LED 废料中轻松浸出稀土的新方法。熔解条件为 700 °C,持续 3 小时,NaOH/LED 比例为 1:1。通过能量色散 X 射线荧光光谱法、诱导耦合等离子体光发射光谱法、X 射线衍射法和傅立叶变换红外光谱法对浸出液和固体残留物进行了分析。结果表明,在低于 70 °C 的温度下处理的浸出液中会形成不理想的硅胶。因此,建议在 90 °C 下进行沥滤,以形成不溶性的二氧化硅。最佳浸出条件是浸出时间为 20 分钟,固液比为 1/20,在 2.5 摩尔/升的 HNO3 溶液中,钇的萃取率为 91%。
Extraction of Yttrium from Light-Emitting Diode Waste by Alkali Fusion Followed by Acid Leaching
Literature regarding metals recovery from LED waste mainly focuses on semiconductor materials and precious metals, lacking data about rare earth elements. This paper explores this gap presenting an experimental study of yttrium extraction from LED waste by alkali fusion/acid leaching method. For this purpose, LED samples were obtained from tubular lamp. Chemical and thermal analyses were performed. Alkali fusion preprocessing was adopted followed by nitric acid leaching to solve difficult yttrium extraction from aluminate structure of LED phosphor. A chemical reaction mechanism in the alkali fusion involving degradation of the silicone polymer and destruction of the aluminate phosphor has been proposed as a novel approach to the subsequent easy leaching of rare earths from LED waste. Fusion conditions were 700 °C, for 3 h, NaOH/LED relation 1:1. Leaching solutions and solid residue were analyzed by energy dispersive X-ray fluorescence spectrometry, induced coupled plasma optical emission spectrometry, X-ray diffractometry and Fourier transform infrared spectroscopy. It was observed the undesirable formation of silica gel in the leaching liquor processed in temperatures below 70 °C. In that way, it is recommended the leaching at 90 °C, with formation of insoluble SiO2. Optimal leaching conditions found were leaching time of 20 min, 1/20 solid/liquid ratio, with 91% yttrium extraction in HNO3 2.5 mol/L at 90 °C.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.