Enhancing Sustainability in Aluminum Reduction Cells Through Cathode Repair Optimization and Numerical Simulations Study on Current Distribution and Erosion Hole Impact
IF 2.5 3区 材料科学Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Sen Zhou, Mouhamadou A. Diop, Bingliang Gao, Zhaowen Wang, Xianwei Hu, Youjian Yang, Wenju Tao
{"title":"Enhancing Sustainability in Aluminum Reduction Cells Through Cathode Repair Optimization and Numerical Simulations Study on Current Distribution and Erosion Hole Impact","authors":"Sen Zhou, Mouhamadou A. Diop, Bingliang Gao, Zhaowen Wang, Xianwei Hu, Youjian Yang, Wenju Tao","doi":"10.1007/s40831-024-00803-8","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the impact of erosion holes and subsequent repairs on the current distribution at the cathode-metal interface in aluminum reduction cells. The research focuses on examining the effects of erosion hole location, size, repair material properties, and the modification of cathode collector bars to optimize cathode repair strategies. The findings indicate that erosion holes lead to a localized concentration of current distribution in the metal at the erosion site. Notably, the maximum current density observed reaches 46125 A/m<sup>2</sup>, and the maximum horizontal current in the lateral cell direction at the cathode-metal interface increases with the depth of the erosion hole. Furthermore, the study reveals that the electrical conductivity of repair materials significantly influences current distribution. Materials with high resistivity behave similarly to insulators. Post-repair actions, including the cutting off of the collector bar, result in a noticeable reduction in current density, with a maximum horizontal current of 5860 A/m<sup>2</sup>. These results provide valuable insights into optimizing cathode repair processes, offering implications for enhancing aluminum reduction cells' efficiency, productivity, and cost-effectiveness.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"77 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00803-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the impact of erosion holes and subsequent repairs on the current distribution at the cathode-metal interface in aluminum reduction cells. The research focuses on examining the effects of erosion hole location, size, repair material properties, and the modification of cathode collector bars to optimize cathode repair strategies. The findings indicate that erosion holes lead to a localized concentration of current distribution in the metal at the erosion site. Notably, the maximum current density observed reaches 46125 A/m2, and the maximum horizontal current in the lateral cell direction at the cathode-metal interface increases with the depth of the erosion hole. Furthermore, the study reveals that the electrical conductivity of repair materials significantly influences current distribution. Materials with high resistivity behave similarly to insulators. Post-repair actions, including the cutting off of the collector bar, result in a noticeable reduction in current density, with a maximum horizontal current of 5860 A/m2. These results provide valuable insights into optimizing cathode repair processes, offering implications for enhancing aluminum reduction cells' efficiency, productivity, and cost-effectiveness.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.