Marta Alessandra de Avila Souza , Adenilson Renato Rudke , Amanda Tavares Germano , Luciano Vitali , Sandra Regina Salvador Ferreira
{"title":"Sequential high-pressure extraction using green solvents to recover bioactive compounds from sesame cake","authors":"Marta Alessandra de Avila Souza , Adenilson Renato Rudke , Amanda Tavares Germano , Luciano Vitali , Sandra Regina Salvador Ferreira","doi":"10.1016/j.supflu.2024.106421","DOIUrl":"10.1016/j.supflu.2024.106421","url":null,"abstract":"<div><div>Sesame cake was submitted to pressurized liquid extraction (PLE) for process optimization. Then, supercritical fluid extraction (SFE), followed by optimized PLE were applied to recover the oily fraction and the polar extract, respectively. PLE samples, at optimized condition and from SFE deffated cake, showed high levels of TPC (33.15 and 31.86 mg GAE/g), DPPH (97.64 and 94.38 µmol TE/g), FRAP (46.12 and 46.69 mg TEg), flavonoids (2.26 and 2.31mgQE/g extract), yield (13.76 and 16.25 %) and protein (56.52 and 54.08 mg BSA/g), respectively. The oily fraction presented high levels of carotenoids and essential fatty acids, while PLE extracts presented higher concentration of ferulic acid, 4-aminobenzoic acid, and quercetin compared to Soxhlet extract. Total Reduced Sugar (<strong>TRS)</strong> content suggests sesame cake as good biomass for bioethanol production. The sequential process (SFE + PLE) was efficient to recover two bioactive fractions from sesame cake, contributing to improve the value of this co-product.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106421"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Villablanca-Ahues , R. Nagl , T. Zeiner , P. Jaeger
{"title":"Aqueous-organic and aqueous-vapor interfacial phenomena for three phase systems containing CO2, CH4, n-butanol, n-dodecane and H2O at saturation conditions","authors":"R. Villablanca-Ahues , R. Nagl , T. Zeiner , P. Jaeger","doi":"10.1016/j.supflu.2024.106420","DOIUrl":"10.1016/j.supflu.2024.106420","url":null,"abstract":"<div><div>A fundamental understanding of the interfacial properties at elevated pressure is essential for processes in the context of the energy transition, such as the storage of CO<sub>2</sub>, H<sub>2</sub> or CH<sub>4</sub>. Systems in such processes have traces of impurities. This work aims to systematically investigate these multi-component systems through simplified vapor-liquid-liquid systems comprising H<sub>2</sub>O, (n-butanol or n-dodecane), and (CO<sub>2</sub> or CH<sub>4</sub>). The model systems are theoretically investigated using the density gradient theory and the PCP-SAFT. The interfacial tension and saturated phase density of the model systems are experimentally measured by the pendant drop and the oscillating tube method, respectively. Good agreement between the theoretical and experimental results is found. It was found that the pure and binary systems of these mixtures can be described well by the introduced model, delivering high quality predictions.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106420"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulisses Silva do Nascimento , Thayná dos Santos Borges , Carolina Kafka Neves , Ariane Moracci Yoshitake , Elisete Vieira do Nascimento , Christiane Bertachini Lombello , Bruno Guzzo da Silva , Lígia Passos Maia-Obi
{"title":"Supercritical CO2 impregnation of pink pepper essential oil in gelatin-siloxane cryogel for biomedical applications","authors":"Ulisses Silva do Nascimento , Thayná dos Santos Borges , Carolina Kafka Neves , Ariane Moracci Yoshitake , Elisete Vieira do Nascimento , Christiane Bertachini Lombello , Bruno Guzzo da Silva , Lígia Passos Maia-Obi","doi":"10.1016/j.supflu.2024.106419","DOIUrl":"10.1016/j.supflu.2024.106419","url":null,"abstract":"<div><div>The supercritical CO<sub>2</sub> impregnation of pink pepper essential oil (EO) can bring its bioactive properties to a biomaterial in a green approach, making it multifunctional. Aiming to obtain a gelatin-siloxane cryogel loaded with pink pepper EO for biomedical applications and to understand the impact of the impregnation conditions, gelatin was crosslinked with (3-glycidoxypropyl)trimethoxysilane and lyophilized, and the impregnation was studied using a design of experiments with conditions from 10 to 30 MPa and 35–60 °C. The cryogel synthesis was confirmed by FTIR, %gel and TGA. Its biocompatibility was demonstrated through SEM, water uptake and cytotoxicity studies. It was shown that, due to the influence on the solubility of the EO in scCO<sub>2</sub>, varying pressure and temperature influences the impregnation, which showed {20 MPa; 35 °C} as its best condition. Therefore, a cryogel suitable for implantation with potential to reduce side effects related with infection and inflammation was obtained.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106419"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guillermo Félix , Richard Djimasbe , Alexis Tirado , Mikhail A. Varfolomeev , Jorge Ancheyta
{"title":"Evaluation of the reaction order and kinetic modeling of Domanic oil shale upgrading at supercritical water conditions","authors":"Guillermo Félix , Richard Djimasbe , Alexis Tirado , Mikhail A. Varfolomeev , Jorge Ancheyta","doi":"10.1016/j.supflu.2024.106418","DOIUrl":"10.1016/j.supflu.2024.106418","url":null,"abstract":"<div><div>Two different kinetic models were developed for the kinetic study of Domanic oil shale conversion in the supercritical water. The oil shale reaction order was evaluated with a three-lump reaction scheme taking into account oil shale, gases, and synthetic oil. Contrary to the commonly reported first-order, it was found that a higher order (2.5) is more suitable for the conversion of oil shale at supercritical water conditions. The main reaction mechanism and predictions were obtained using a more detailed reaction network (five-lump model), which precisely estimates the experimental yield of all compounds contemplated. The statistical analysis suggested that the estimated kinetic parameters were suitably optimized, as well as the sensitivity analysis confirmed that these are the optimal values. The conversion of organic matter into gas and coke through free radical reactions exhibits larger rates using supercritical water. Low temperature (380 °C) and short reaction times favor the yield of synthetic oil because when these conditions are exceeded secondary cracking reactions provoke the generation of gases. Gas production is mainly carried out by the conversion of organic matter for brief reaction times and the transformation of carbonates for extended periods.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106418"},"PeriodicalIF":3.4,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of solvent selection and RESS processing conditions on formation of a praziquantel-malonic acid cocrystal in supercritical CO2","authors":"Lauren A. MacEachern , Grace O’Connor , Jamileh Shojaeiarani , Mahmoud Mirmehrabi , Azadeh Kermanshahi-pour","doi":"10.1016/j.supflu.2024.106417","DOIUrl":"10.1016/j.supflu.2024.106417","url":null,"abstract":"<div><div>Praziquantel (PZQ) is an anthelmintic drug with low solubility, therefore cocrystallization and particle size reduction is desirable to improve bioavailability. In this study, a PZQ-malonic acid cocrystal was micronized by rapid expansion of supercritical solution (RESS). Due to low solubility in scCO<sub>2</sub>, four cosolvents were screened as RESS modifiers. While addition of acetone or THF yielded mixtures of PZQ and its cocrystal, MeOH and EtOH produced pure cocrystal. Impact of pressure (15–30 MPa), temperature (35–55 °C), and cosolvent loading (3–10 volumes) on phase-purity, yield, and particle size were investigated. Adding cosolvent to RESS facilitated dissolution of cocrystal formers in scCO<sub>2</sub> and crystallization of the cocrystal with yields up to 68.5 wt% and particle size as low as 600 nm. Results show that for APIs with low solubility in scCO<sub>2</sub>, cosolvent-modified RESS is a suitable approach for simultaneous crystallization and micronization.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106417"},"PeriodicalIF":3.4,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seung Eun Lee , Ji Sun Lim , Young-Kwon Park , Bonggeun Shong , Hong-shik Lee
{"title":"Utilizing cocoa bean husk residues from supercritical extraction for biofuel production through hydrothermal liquefaction","authors":"Seung Eun Lee , Ji Sun Lim , Young-Kwon Park , Bonggeun Shong , Hong-shik Lee","doi":"10.1016/j.supflu.2024.106416","DOIUrl":"10.1016/j.supflu.2024.106416","url":null,"abstract":"<div><div>This study aimed to develop an efficient method for converting residual biomass into biofuel through a process that combines supercritical fluid extraction and hydrothermal liquefaction. The study analyzed the compositional changes in the biomass residues using various co-solvents and assessed their potential for biofuel production. After hydrothermal liquefaction, the liquid biofuel produced showed a decrease in the H to C ratio from 1.7 to 1.6 and a reduction in the O to C ratio from 0.5 to 0.2, compared to the unprocessed feedstock, indicating a favorable alteration in elemental composition for biofuel production. Notably, residues extracted with supercritical CO<sub>2</sub> and ethanol had the lowest yield, while those extracted with CO<sub>2</sub> and water achieved the highest energy recovery at 101.5 %. These findings suggest that integrating supercritical fluid extraction with hydrothermal liquefaction is an environmentally sustainable and efficient approach, significantly advancing the development of sustainable biofuels.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106416"},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of stable slippery lubricant-infused porous surface on polymethyl methacrylate/thermoplastic polyurethane by supercritical CO2 foaming","authors":"Shaowei Xing, Yishen Zhao, Chenxu Tian, Cuifang Lv, Meijiang Lin, Yao Wang, Guangxian Li, Xia Liao","doi":"10.1016/j.supflu.2024.106415","DOIUrl":"10.1016/j.supflu.2024.106415","url":null,"abstract":"<div><div>The development of sustainable and efficient methods to prepare slippery lubricant-infused porous surface (SLIPS) is a profound work. In this study, using bilayer polymers restricting foaming mutually, bimodal cells were prepared through bilayer poly(methyl methacrylate) (PMMA). At the same time, uniform cells were prepared by bilayer PMMA /thermoplastic polyurethane (TPU). The prepared porous surfaces exhibited a high porosity (57 % or more). TPU as dispersed phase increased the cell density of the PMMA/TPU surface with a maximum cell density of 5.5 × 10<sup>7</sup> cells/cm<sup>2</sup> and an average cell size of 1.0 μm. SLIPS prepared on PMMA/TPU surface with high porosity and uniform microcellular had better stability, and the sliding angle (<em>SA</em>) remained less than 10° after centrifugal rotation at 8000 r/min. Therefore, this work provides an approach to improve the surface cell density and produce SLIPS sustainably and efficiently.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106415"},"PeriodicalIF":3.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response surface optimization for supercritical carbon dioxide extraction of Korarima (Aframomum corrorima) seed oil and its antibacterial activity evaluation","authors":"Mulugeta Guta, Huijun Tan, Yaping Zhao","doi":"10.1016/j.supflu.2024.106411","DOIUrl":"10.1016/j.supflu.2024.106411","url":null,"abstract":"<div><div>Oils extracted from natural plants are valuable resources because of their diverse biocidal activity against microorganisms. This paper reports, for the first time, supercritical CO<sub>2</sub> extraction of oil from Korarima (<em>Aframomum corrorima</em>) seeds and its antibacterial activity evaluation. The influences of pressure, temperature, and extraction time on the yield of supercritical CO<sub>2</sub>-extracted oil (scCO<sub>2</sub>-extracted oil) were optimized using the Response Surface Methodology. Under the optimal extraction conditions of 46 °C, 15.5 MPa, and 147 min, the extraction yield reached 1.60±0.04 %, consistent with the theoretical value of 1.58 %. The compositions of the scCO<sub>2</sub>-extracted oil were identified by GC-MS, primarily consisting of nerolidol (33.97–41.20 %), geraniol (23.08–24.50 %), and α-terpinene (8.90–9.06 %). The oil exhibited significant antibacterial activity against <em>Staphylococcus. aureus</em> with a minimum inhibitory concentration of 1 mg·mL<sup>−1</sup>. This study highlights the potential applications of supercritical CO<sub>2</sub> extraction technology for extracting Korarima seed oil and its use as an antibacterial ingredient in cosmetics and pharmaceuticals.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106411"},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624002468/pdfft?md5=bd3f2f0442e2635ab13aaeb5bc35c480&pid=1-s2.0-S0896844624002468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation of the pressure drop of CO2 flow at supercritical pressures in a heated 4 mm smooth pipe with different orientations","authors":"Konstantinos Theologou, Rainer Mertz, Jörg Starflinger","doi":"10.1016/j.supflu.2024.106407","DOIUrl":"10.1016/j.supflu.2024.106407","url":null,"abstract":"<div><div>The application of supercritical fluids as an alternative heat transfer medium in thermal processes is becoming increasingly important, whereby the understanding of their pressure drop characteristics is essential for the process and component design. With a total of 96 experiments, this publication shows a systematic analysis of the pressure drop of CO<sub>2</sub> flow at supercritical pressures in a heated smooth pipe with an inner diameter of 4 mm, at a pressure of 7.75 MPa, mass fluxes up to 2000 kg/m<sup>2</sup>s and heat fluxes up to 235 kW/m<sup>2</sup>. The hydrostatic pressure drop accounts for between 4 % and 24 % of the total pressure drop and the pressure drop due to flow acceleration for between 12 % and 30 %, with the frictional pressure drop accounting for the largest percentage. It was found that the Filonenko correlation can predict the pipe friction pressure drop in the investigated parameter range with a mean absolute deviation of 7 %.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106407"},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noelia D. Machado , María L. Goñi , Nicolás A. Gañán
{"title":"Effect of supercritical CO2 drying variables and gel composition on the textural properties of cellulose aerogels","authors":"Noelia D. Machado , María L. Goñi , Nicolás A. Gañán","doi":"10.1016/j.supflu.2024.106414","DOIUrl":"10.1016/j.supflu.2024.106414","url":null,"abstract":"<div><div>Cellulose aerogels are interesting platforms for biomedical and drug delivery applications, due to their biocompatibility, biodegradability, water absorption capacity, and good textural properties. Supercritical CO<sub>2</sub> drying has been proven as an efficient technology for obtaining aerogels and preserving the porous structure. In this work, the effect of relevant process variables (CO<sub>2</sub> density, depressurization rate, and intermediate depressurization mode) and gel composition on the textural properties of cellulose aerogels is studied. Experiments are performed in batch-mode, and aerogel monoliths are characterized in terms of apparent density, porosity, specific surface area, and crystalline morphology. Water uptake in different buffer solutions is also evaluated. The use of thiourea in the gel formation leads to lower porosity. On the other hand, higher porosity and surface area are obtained when depressurization is slow and the system is only partially depressurized between drying cycles. Aerogels showed a good and fast water uptake capacity, regardless of the pH (200–500 %).</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106414"},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624002493/pdfft?md5=ead4f2572c1445030d3d7097f9667018&pid=1-s2.0-S0896844624002493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}