{"title":"Performability analysis for the SPVC line system of leaf spring production plant using probabilistic approach","authors":"S. Parkash, P.C. Tewari","doi":"10.1108/jqme-07-2023-0062","DOIUrl":"https://doi.org/10.1108/jqme-07-2023-0062","url":null,"abstract":"PurposeThis work ensures the higher performability of this complex system, which consists of five different subsystems, i.e. shearing machine, V-cutting machine, center hole punch, edge cutting burr and drilling machine. These subsystems are placed in combinations of both series and parallel arrangement. The concerned plant management must be aware of the failures that have the greatest/least impact on the system’s performance.Design/methodology/approachPerformability analysis has been done for the Shearing, Punch and V- Cutting (SPVC) line system by using a probabilistic approach (i.e. Markov method). This system was further divided into five subsystems, and single-order differential equations are derived using the transition diagram. MATLAB software was used to determine the performability of the system for various combinations of repair and failure rates.FindingsIn this research work, performability analysis was done using different combinations of repair and failure rates for these subsystems. Further, a decision matrix (DM) has been developed that indicates that edge cutting burr is the most critical subsystem, which requires the top level of maintenance priorities among the various subsystems. This matrix will facilitate policymaking related to various maintenance activities for the respective system.Originality/valueIn this research work, a mathematical modeling based on a single differential equation using a transition diagram has been developed for the SPVC line system. The novelty of this work is to consider interaction among different subsystem, which generates more realistic situation during modeling. The purposed DM helps make future maintenance planning, which reduces maintenance costs and enhances system's performability.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adel Ali Ahmed Qaid, Rosmaini Ahmad, S. A. Mustafa, Badiea Abdullah Mohammed
{"title":"A systematic reliability-centred maintenance framework with fuzzy computational integration – a case study of manufacturing process machinery","authors":"Adel Ali Ahmed Qaid, Rosmaini Ahmad, S. A. Mustafa, Badiea Abdullah Mohammed","doi":"10.1108/jqme-04-2022-0021","DOIUrl":"https://doi.org/10.1108/jqme-04-2022-0021","url":null,"abstract":"PurposeThis study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred maintenance (RCM) approach to minimise the high downtime of a production line, thus increasing its reliability and availability. A case study of a production line from the ghee and soap manufacturing industry in Taiz, Yemen, is presented for framework validation purposes. The framework provides a systematic process to identify the critical system(s) and guide further investigation for functional significant items (FSIs) based on quantitative and qualitative analyses before recommending appropriate maintenance strategies and specific tasks.Design/methodology/approachThe proposed framework integrates conventional RCM procedure with the fuzzy computational process to improve FSIs criticality estimation, which is the main part of failure mode effect criticality analysis (FMECA) applications. The framework consists of four main implementation stages: identification of the critical system(s), technical analysis, Fuzzy-FMECA application for FSIs criticality estimation and maintenance strategy selection. Each stage has its objective(s) and related scientific techniques that are applied to systematically guide the framework implementation.FindingsThe proposed framework validation is summarised as follows. The first stage results demonstrate that the seaming system (top and bottom systems) caused 50% of the total production line downtime, indicating it is a critical system that requires further analysis. The outcomes of the second stage provide significant technical information on the subject (seaming system), helping team members to identify and understand the structure and functional complexities of the seaming system. This stage also provides a better understanding of how the seaming system functions and how it can fail. In stage 3, the application of FMECA with the fuzzy computation integration process presents a systematic way to analyse the failure mode, effect and cause of items (components of the seaming system). This stage also includes items’ criticality estimation and ranking assessment. Finally, stage four guides team members in recommending the appropriate countermeasures (maintenance strategies and task selection) based on their priority level.Originality/valueThis paper proposes an original maintenance strategies development framework based on the RCM approach for production system equipment. Specifically, it considers a fuzzy computational process based on the Gaussian function in the third stage of the proposed framework. Adopting the fuzzy computational process improves the risk priority number (RPN) estimation, resulting in better criticality ranking determination. Another significant contribution is introducing an extended item criticality ranking assessment process to provide maximum levels of criticality item ranking. Finally, the proposed RCM framework a","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcelo Miguel da Cruz, R. Caiado, T. Sigahi, R. Anholon, O. Quelhas, Izabella Rampasso
{"title":"Analysis of asset management difficulties observed in Brazilian firms: a study based on expert survey and fuzzy TOPSIS","authors":"Marcelo Miguel da Cruz, R. Caiado, T. Sigahi, R. Anholon, O. Quelhas, Izabella Rampasso","doi":"10.1108/jqme-09-2023-0088","DOIUrl":"https://doi.org/10.1108/jqme-09-2023-0088","url":null,"abstract":"PurposeThe purpose of this paper was to understand the difficulties related to asset management observed by experts in Brazilian organizations in light of the requirements outlined in the ISO 55001:2014 standard.Design/methodology/approachA survey was performed with asset management experts. The collected data were analyzed using frequency analysis, hierarchical cluster analysis and fuzzy technique for order preference by similarity to deal solution (TOPSIS).FindingsBased on data analysis, the most critical difficulties observed were related to managing and controlling the impact of changes in the company that affect asset management objectives; to the committing to and supporting the asset management system by the top management of the organization; to manage the processes for dealing with risks and opportunities for the asset management system and plans, and correcting failures in asset performance; and to plan and conduct actions in an integrated manner to identify and minimize adverse impacts associated with the asset management system, and afterwards verifying their effectiveness.Originality/valueThe findings of this study have important theoretical and practical contributions, since they indicate the most critical points observed in asset management in Brazil, which can be used as a source for future research and by professionals to prioritize difficulties in future planning and develop action plans to overcome them. The step-by-step methodological approach presented in this study provides professionals and researchers with a replicable method of identifying potential asset management difficulties in a given specific reality.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141009691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neveen Barakat, Liana Hajeir, Sarah Alattal, Zain Hussein, Mahmoud Awad
{"title":"Air leaks fault detection in maintenance using machine learning","authors":"Neveen Barakat, Liana Hajeir, Sarah Alattal, Zain Hussein, Mahmoud Awad","doi":"10.1108/jqme-02-2023-0016","DOIUrl":"https://doi.org/10.1108/jqme-02-2023-0016","url":null,"abstract":"PurposeThe objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure modes and identify the leaky/faulty cylinder. The successful implementation of the proposed scheme will reduce energy consumption, scrap and rework, and time to repair.Design/methodology/approachEffective implementation of maintenance is important to reduce operation cost, improve productivity and enhance quality performance at the same time. Condition-based monitoring is an effective maintenance scheme where maintenance is triggered based on the condition of the equipment monitored either real time or at certain intervals. Pneumatic air systems are commonly used in many industries for packaging, sorting and powering air tools among others. A common failure mode of pneumatic cylinders is air leaks which is difficult to detect for complex systems with many connections. The proposed method consists of monitoring the stroke speed profile of the piston inside the pneumatic cylinder using hall effect sensors. Statistical features are extracted from the speed profiles and used to develop a fault detection machine learning model. The proposed method is demonstrated using a real-life case of tea packaging machines.FindingsBased on the limited data collected, the ensemble machine learning algorithm resulted in 88.4% accuracy. The algorithm can detect failures as soon as they occur based on majority vote rule of three machine learning models.Practical implicationsEarly air leak detection will improve quality of packaged tea bags and provide annual savings due to time to repair and energy waste reduction. The average annual estimated savings due to the implementation of the new CBM method is $229,200 with a payback period of less than two years.Originality/valueTo the best of the authors’ knowledge, this paper is the first in terms of proposing a CBM for pneumatic systems air leaks using piston speed. Majority, if not all, current detection methods rely on expensive equipment such as infrared or ultrasonic sensors. This paper also contributes to the research gap of economic justification of using CBM.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141019133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An ontology-driven model for hospital equipment maintenance management: a case study","authors":"Mawloud Titah, Mohammed Abdelghani Bouchaala","doi":"10.1108/jqme-10-2023-0097","DOIUrl":"https://doi.org/10.1108/jqme-10-2023-0097","url":null,"abstract":"Purpose This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.Design/methodology/approach The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.Findings Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.Originality/value An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repair part service level differentiation based on holding other parts shortage costs","authors":"John Maleyeff, Jingran Xu","doi":"10.1108/jqme-07-2023-0061","DOIUrl":"https://doi.org/10.1108/jqme-07-2023-0061","url":null,"abstract":"PurposeThe article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of parts used to repair equipment acquired over many decades. Demand is intermittent, procurement lead times are long, and the total inventory investment is significant.Design/methodology/approachDemand exists for repair kits, and a repair cannot start until all required parts are available. The cost model includes holding cost to carry the part being modeled as well as shortage cost that consists of the holding cost to carry all other repair kit parts for the duration of the part’s lead time. The model combines deterministic and stochastic approaches by assuming a fixed ordering cycle with Poisson demand.FindingsThe results show that optimal service levels vary as a function of repair demand rate, part lead time, and cost of the part as a percentage of the total part cost for the repair kit. Optimal service levels are higher for inexpensive parts and lower for expensive parts, although the precise levels are impacted by repair demand and part lead time.Social implicationsThe proposed model can impact society by improving the operational performance and efficiency of public transit systems, by ensuring that home repair technicians will be prepared for repair tasks, and by reducing the environmental impact of electronic waste consistent with the right-to-repair movement.Originality/valueThe optimization model is unique because (1) it quantifies shortage cost as the cost of unnecessary holding other parts in the repair kit during the shortage time, and (2) it determines a unique service level for each part in a repair kit bases on its lead time, its unit cost, and the total cost of all parts in the repair kit. Results will be counter-intuitive for many inventory managers who would assume that more critical parts should have higher service levels.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140230681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Action research of lean 4.0 application to the maintenance of hydraulic systems in steel industry","authors":"N. Torre, Andrei Bonamigo","doi":"10.1108/jqme-06-2023-0058","DOIUrl":"https://doi.org/10.1108/jqme-06-2023-0058","url":null,"abstract":"PurposeMaintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems one of the issues that require a high level of attention. This study aims to explore an empirical investigation for decreasing the occurrences of corrective maintenance of hydraulic systems in the context of Lean 4.0.Design/methodology/approachThe maintenance model is developed based on action-research methodology through an empirical investigation, with nine stages. This approach aims to build a scenario to analyze and interpret the occurrences, seeking to implement and evaluate the actions to be performed. The undertaken initiatives demonstrate that this approach can be applied to optimize the maintenance of an organization.FindingsThe main contribution of this paper is to demonstrate that the applied method allows the overviewing results, with a qualitative approach concerning the maintenance actions and management processes to be considered, allowing a holistic understanding and contributing to the current literature. The results also indicated that Lean 4.0 has direct and mediating effects on maintenance performance.Originality/valueThis research intends to propose an evaluation framework with an interdimensional linkage between action research methodology and Lean 4.0, to explore an empirical investigation and contributing to understanding the actions to reduce the occurrences of hydraulic systems corrective maintenance in a production line in the steel industry.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140389631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance analysis of a complex process industrial unit utilizing intuitionistic fuzzy-based integrated framework","authors":"Dinesh Kumar Kushwaha, Dilbagh Panchal, Anish Kumar Sachdeva","doi":"10.1108/jqme-08-2023-0077","DOIUrl":"https://doi.org/10.1108/jqme-08-2023-0077","url":null,"abstract":"PurposeAn integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.Design/methodology/approachFor the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.FindingsFor 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.Research limitations/implicationsThe limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.Social implicationsThe livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.Originality/valueMathematical modelling of the considered unit has been done applying ba","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance analysis of a complex process industrial unit utilizing intuitionistic fuzzy-based integrated framework","authors":"Dinesh Kumar Kushwaha, Dilbagh Panchal, Anish Kumar Sachdeva","doi":"10.1108/jqme-08-2023-0077","DOIUrl":"https://doi.org/10.1108/jqme-08-2023-0077","url":null,"abstract":"PurposeAn integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.Design/methodology/approachFor the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.FindingsFor 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.Research limitations/implicationsThe limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.Social implicationsThe livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.Originality/valueMathematical modelling of the considered unit has been done applying ba","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139841803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Nogueira da Mata Filho, Antonio Celio Pereira de Mesquita, F. Abrahão, Guilherme C. Rocha
{"title":"An innovative method to solve the maintenance task allocation and packing problem","authors":"José Nogueira da Mata Filho, Antonio Celio Pereira de Mesquita, F. Abrahão, Guilherme C. Rocha","doi":"10.1108/jqme-08-2023-0069","DOIUrl":"https://doi.org/10.1108/jqme-08-2023-0069","url":null,"abstract":"PurposeThis paper aims to explore the optimization process involved in the aircraft maintenance allocation and packing problem. The aircraft industry misses a part of the optimization potential while developing maintenance plans. This research provides the modeling foundation for the missing part considering the failure behavior of components, costs involved with all maintenance tasks and opportunity costs.Design/methodology/approachThe study models the cost-effectiveness of support against the availability to come up with an optimization problem. The mathematical problem was solved with an exact algorithm. Experiments were performed with real field and synthetically generated data, to validate the correctness of the model and its potential to provide more accurate and better engineered maintenance plans.FindingsThe solution procedure provided excellent results by enhancing the overall arrangement of the tasks, resulting in higher availability rates and a substantial decrease in total maintenance costs. In terms of situational awareness, it provides the user with the flexibility to better manage resource constraints while still achieving optimal results.Originality/valueThis is an innovative research providing a state-of-the-art mathematical model and an algorithm for efficiently solving a task allocation and packing problem by incorporating components’ due flight time, failure probability, task relationships, smart allocation of common preparation tasks, operational profile and resource limitations.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139841998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}