Velmurugan Kumaresan, S. Saravanasankar, G. Di Bona
{"title":"为中小企业的最佳维护和服务管理系统确定最佳维护参数","authors":"Velmurugan Kumaresan, S. Saravanasankar, G. Di Bona","doi":"10.1108/jqme-10-2022-0070","DOIUrl":null,"url":null,"abstract":"PurposeThrough the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.Design/methodology/approachTo obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.FindingsThe major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.Originality/valueThe proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of optimal maintenance parameters for best maintenance and service management system in the SMEs\",\"authors\":\"Velmurugan Kumaresan, S. Saravanasankar, G. Di Bona\",\"doi\":\"10.1108/jqme-10-2022-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThrough the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.Design/methodology/approachTo obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.FindingsThe major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.Originality/valueThe proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-10-2022-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-10-2022-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Identification of optimal maintenance parameters for best maintenance and service management system in the SMEs
PurposeThrough the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.Design/methodology/approachTo obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.FindingsThe major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.Originality/valueThe proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance