Journal of Phycology最新文献

筛选
英文 中文
Igniting taxonomic curiosity: The amazing story of Amazonocrinis with the description of a new genus Ahomia gen. nov. and novel species of Ahomia, Amazonocrinis, and Dendronalium from the biodiversity-rich northeast region of India 点燃分类学的好奇心:描述了来自生物多样性丰富的印度东北部地区的 Ahomia 新属、Amazonocrinis 和 Dendronalium 新种。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-02-11 DOI: 10.1111/jpy.13421
Sagarika Pal, Aniket Saraf, Naresh Kumar, Prashant Singh
{"title":"Igniting taxonomic curiosity: The amazing story of Amazonocrinis with the description of a new genus Ahomia gen. nov. and novel species of Ahomia, Amazonocrinis, and Dendronalium from the biodiversity-rich northeast region of India","authors":"Sagarika Pal,&nbsp;Aniket Saraf,&nbsp;Naresh Kumar,&nbsp;Prashant Singh","doi":"10.1111/jpy.13421","DOIUrl":"10.1111/jpy.13421","url":null,"abstract":"<p>Five cyanobacterial strains exhibiting <i>Nostoc</i>-like morphology were sampled from the biodiversity hotspots of the northeast region of India and characterized using a polyphasic approach. Molecular and phylogenetic analysis using the 16S rRNA gene indicated that the strains belonged to the genera <i>Amazonocrinis</i> and <i>Dendronalium</i>. In the present investigation, the 16S rRNA gene phylogeny clearly demarcated two separate clades of <i>Amazonocrinis</i>. The strain MEG8-PS clustered along with <i>Amazonocrinis nigriterrae</i> CENA67, which is the type strain of the genus. The other three strains ASM11-PS, RAN-4C-PS, and NP-KLS-5A-PS clustered in a different clade that was phylogenetically distinct from the <i>Amazonocrinis</i> sensu stricto clade. Interestingly, while the 16S rRNA gene phylogeny exhibited two separate clusters, the 16S–23S ITS region analysis did not provide strong support for the phylogenetic observation. Subsequent analyses raised questions regarding the resolving power of the 16S–23S ITS region at the genera level and the associated complexities in cyanobacterial taxonomy. Through this study, we describe a novel genus <i>Ahomia</i> to accommodate the members clustering outside the <i>Amazonocrinis</i> sensu stricto clade. In addition, we describe five novel species, <i>Ahomia kamrupensis</i>, <i>Ahomia purpurea</i>, <i>Ahomia soli</i>, <i>Amazonocrinis meghalayensis</i>, and <i>Dendronalium spirale</i>, in accordance with the International Code of Nomenclature for algae, fungi, and plants (ICN). Apart from further enriching the genera <i>Amazonocrinis</i> and <i>Dendronalium</i>, the current study helps to resolve the taxonomic complexities revolving around the genus <i>Amazonocrinis</i> and aims to attract researchers to the continued exploration of the tropical and subtropical cyanobacteria for interesting taxa and lineages.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
French Polynesian Scytosiphonaceae (Ectocarpales, Phaeophyceae): A combined molecular and morphological approach to their diversity and systematics 法属波利尼西亚 Scytosiphonaceae(外果藻科):结合分子和形态学方法研究其多样性和系统学
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-02-04 DOI: 10.1111/jpy.13432
Christophe Vieira, Myung Sook Kim, Mayalen Zubia
{"title":"French Polynesian Scytosiphonaceae (Ectocarpales, Phaeophyceae): A combined molecular and morphological approach to their diversity and systematics","authors":"Christophe Vieira,&nbsp;Myung Sook Kim,&nbsp;Mayalen Zubia","doi":"10.1111/jpy.13432","DOIUrl":"10.1111/jpy.13432","url":null,"abstract":"<p>This study revisited the taxonomy and diversity of brown macroalgae within the Scytosiphonaceae family in French Polynesia, which had previously been recognized as encompassing only six species. Using the chloroplast and mitochondrial genes <i>rbc</i>L, <i>psb</i>A, and <i>cox</i>3 as molecular markers in conjunction with morpho-anatomical observations, we unveiled the presence of 11 species spanning six genera: <i>Chnoospora minima</i>, <i>Colpomenia claytoniae</i>, <i>Co. sinuosa</i> [groups IIIa and IIIb], <i>Hydroclathrus rapanuii</i>, <i>H. tenuis</i>, <i>H. tilesii</i>, <i>Manzaea minuta</i>, <i>Pseudochnoospora implexa</i>, <i>Rosenvingea australis</i>, and the newly described species <i>R. polynesiensis</i> sp. nov. and <i>R. tahitiensis</i> sp. nov. This encompasses the recognition of two previously unreported genera in this region: <i>Manzaea</i> and <i>Pseudochnoospora</i>. Sequences were successfully acquired for four taxa that had been documented previously, while the absence of sequences for <i>H. clathratus</i> and <i>H. tumulis</i> in French Polynesia raises queries about their presence in this region. With these additions, the total species count now stands at 13 (including <i>H. clathratus</i> and <i>H. tumulis</i>), one being an endemic species. The molecular-assisted alpha taxonomic approach used here allowed for a critical revision of the Scytosiphonaceae species checklist for French Polynesia. The diversity revealed in this region accounts for a substantial 20% of the family's global diversity. Additionally, our study presents an updated species-level phylogeny for the Scytosiphonaceae.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organellar genomic characterization of Anunuuluaehu liula representing a new genus and species of Phyllophoraceae (Gigartinales, Rhodophyta) from the mesophotic zone of Hawai‘i Anunuuluaehu liula 的细胞器基因组特征,代表夏威夷中生代植物区系 Phyllophoraceae(Gigartinales, Rhodophyta)的一个新属和新种。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-30 DOI: 10.1111/jpy.13427
Feresa P. Cabrera, Monica O. Paiano, James T. Fumo, Kazumi R. Allsopp, Celia M. Smith, Heather L. Spalding, Randall K. Kosaki, Alison R. Sherwood
{"title":"Organellar genomic characterization of Anunuuluaehu liula representing a new genus and species of Phyllophoraceae (Gigartinales, Rhodophyta) from the mesophotic zone of Hawai‘i","authors":"Feresa P. Cabrera,&nbsp;Monica O. Paiano,&nbsp;James T. Fumo,&nbsp;Kazumi R. Allsopp,&nbsp;Celia M. Smith,&nbsp;Heather L. Spalding,&nbsp;Randall K. Kosaki,&nbsp;Alison R. Sherwood","doi":"10.1111/jpy.13427","DOIUrl":"10.1111/jpy.13427","url":null,"abstract":"<p>Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described as <i>Anunuuluaehu liula</i> gen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus, <i>Anunuuluaehu</i>, shares many characteristics with the family Phyllophoraceae and shows close similarities to <i>Archestennogramma</i> and <i>Stenogramma</i>, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi-layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single-layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi-gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis-splicing genes, interrupted by intron-encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes of <i>A. liula</i>. Notably, a specific region of the <i>cox</i>I group II intron exhibits similarity to fungal introns. <i>Anunuuluaehu liula</i> is presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho‘olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bathymetric origin shapes the physiological responses of Pterygophora californica (Laminariales, Phaeophyceae) to deep marine heatwaves 水深起源决定了加州翼角藻(层藻纲,辉绿藻科)对深海热浪的生理反应。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-24 DOI: 10.1111/jpy.13433
Antonella C. Almeida-Saá, Schery Umanzor, Jose Antonio Zertuche-González, Ricardo Cruz-López, Raquel Muñiz-Salazar, Alejandra Ferreira-Arrieta, Paula Bonet Melià, Jessica Anayansi García-Pantoja, Laura K. Rangel-Mendoza, Manuel Vivanco-Bercovich, Leonardo Ruiz-Montoya, Jose Manuel Guzmán-Calderón, Jose Miguel Sandoval-Gil
{"title":"Bathymetric origin shapes the physiological responses of Pterygophora californica (Laminariales, Phaeophyceae) to deep marine heatwaves","authors":"Antonella C. Almeida-Saá,&nbsp;Schery Umanzor,&nbsp;Jose Antonio Zertuche-González,&nbsp;Ricardo Cruz-López,&nbsp;Raquel Muñiz-Salazar,&nbsp;Alejandra Ferreira-Arrieta,&nbsp;Paula Bonet Melià,&nbsp;Jessica Anayansi García-Pantoja,&nbsp;Laura K. Rangel-Mendoza,&nbsp;Manuel Vivanco-Bercovich,&nbsp;Leonardo Ruiz-Montoya,&nbsp;Jose Manuel Guzmán-Calderón,&nbsp;Jose Miguel Sandoval-Gil","doi":"10.1111/jpy.13433","DOIUrl":"10.1111/jpy.13433","url":null,"abstract":"<p>Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of <i>Pterygophora californica</i> (walking kelp) from the bathymetric extremes (8–10 vs. 25–27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of <i>P. californica</i> populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing 藻类有多少种?再现。四个王国,14 个门,63 个类,而且还在不断增加。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-21 DOI: 10.1111/jpy.13431
Michael D. Guiry
{"title":"How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing","authors":"Michael D. Guiry","doi":"10.1111/jpy.13431","DOIUrl":"10.1111/jpy.13431","url":null,"abstract":"<p>To date (1 November 2023), the online database AlgaeBase has documented 50,589 species of living algae and 10,556 fossil species here referred to four kingdoms (Eubacteria, Chromista, Plantae, and Protozoa), 14 phyla, and 63 classes. The algae are the third most speciose grouping of plant-like organisms after the flowering plants (≈382,000 species) and fungi (≈170,000 species, including lichens) but are the least well defined of all the botanical groupings. Priority is given to phyla and class names that are familiar to phycologists and that are nomenclaturally valid. The most species-rich phylum is the Heterokontophyta to which 18 classes are referred with 21,052 living species and which is dominated by the diatoms in three classes with 18,673 species (16,427 living; 2239 fossil). The next most species-rich phyla are the red algae (7276 living), the green algae (6851 living), the blue-green algae (Cyanobacteria, 5723 living), the charophytes (4950 living, including the Charophyceae, 511 species living, and the Zygnematophyceae, 4335 living species), Dinoflagellata (2956 living, including the Dinophyceae, 2828 extant), and haptophytes (Haptophyta 1722 species, 517 living).</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent photophysiology and prokaryotic assemblage structure in epilithic cyanobacterial tufts and algal turf communities 附生蓝藻丛和藻类草皮群落中趋同的光生理学和原核生物组合结构。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-19 DOI: 10.1111/jpy.13424
Ethan C. Cissell, Sophie J. McCoy
{"title":"Convergent photophysiology and prokaryotic assemblage structure in epilithic cyanobacterial tufts and algal turf communities","authors":"Ethan C. Cissell,&nbsp;Sophie J. McCoy","doi":"10.1111/jpy.13424","DOIUrl":"10.1111/jpy.13424","url":null,"abstract":"<p>As global change spurs shifts in benthic community composition on coral reefs globally, a better understanding of the defining taxonomic and functional features that differentiate proliferating benthic taxa is needed to predict functional trajectories of reef degradation better. This is especially critical for algal groups, which feature dramatically on changing reefs. Limited attention has been given to characterizing the features that differentiate tufting epilithic cyanobacterial communities from ubiquitous turf algal assemblages. Here, we integrated an in situ assessment of photosynthetic yield with metabarcoding and shotgun metagenomic sequencing to explore photophysiology and prokaryotic assemblage structure within epilithic tufting benthic cyanobacterial communities and epilithic algal turf communities. Significant differences were not detected in the average quantum yield. However, variability in yield was significantly higher in cyanobacterial tufts. Neither prokaryotic assemblage diversity nor structure significantly differed between these functional groups. The sampled cyanobacterial tufts, predominantly built by <i>Okeania</i> sp., were co-dominated by members of the Proteobacteria, Firmicutes, and Bacteroidota, as were turf algal communities. Few detected ASVs were significantly differentially abundant between functional groups and consisted exclusively of taxa belonging to the phyla Proteobacteria and Firmicutes. Assessment of the distribution of recovered cyanobacterial amplicons demonstrated that alongside sample-specific cyanobacterial diversification, the dominant cyanobacterial members were conserved across tufting cyanobacterial and turf algal communities. Overall, these data suggest a convergence in taxonomic identity and mean photosynthetic potential between tufting epilithic cyanobacterial communities and algal turf communities, with numerous implications for consumer-resource dynamics on future reefs and trajectories of reef functional ecology.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taxonomy and nomenclature of Oophila amblystomatis (Chlorophyceae, Chlamydomonadales) Oophila amblystomatis(叶绿藻纲,衣藻目)的分类和命名。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-15 DOI: 10.1111/jpy.13430
Cory D. Bishop, David J. Garbary
{"title":"Taxonomy and nomenclature of Oophila amblystomatis (Chlorophyceae, Chlamydomonadales)","authors":"Cory D. Bishop,&nbsp;David J. Garbary","doi":"10.1111/jpy.13430","DOIUrl":"10.1111/jpy.13430","url":null,"abstract":"<p>The unicellular green alga <i>Oophila amblystomatis</i> was named by Lambert in 1905 based upon its association with egg masses of the spotted salamander <i>Ambystoma maculatum</i>. We collected algal cells from Lambert's original egg capsule preparations that were contributed to <i>Phycotheca Boreali-Americana</i> (PBA) in 1905 and subjected them to DNA extraction and PCR with <i>O. amblystomatis</i>-specific 18S rRNA gene primers. DNA amplified from these preparations was cloned and nine clones were sequenced. Along with representative sequences from the <i>Oophila</i> clade and Chlorophyceae, a phylogenetic tree was inferred. Seven sequences clustered within the <i>Oophila</i> clade and two clustered with <i>Chlamydomonas moewusii</i>, which is included in a sister clade to <i>Oophila</i>. By sequencing algal material from the egg capsules of representative type material we can unambiguously characterize <i>O. amblystomatis</i> and define a monophyletic clade centered on this type material. Accordingly, we reject a recent proposal that this species be transferred to <i>Chlorococcum</i>.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate 莱茵衣藻(叶绿体)的元素和大分子可塑性对资源限制和生长速度的响应。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-10 DOI: 10.1111/jpy.13417
Jana Isanta-Navarro, Logan M. Peoples, Benedicta Bras, Matthew J. Church, James J. Elser
{"title":"Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate","authors":"Jana Isanta-Navarro,&nbsp;Logan M. Peoples,&nbsp;Benedicta Bras,&nbsp;Matthew J. Church,&nbsp;James J. Elser","doi":"10.1111/jpy.13417","DOIUrl":"10.1111/jpy.13417","url":null,"abstract":"<p>With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga <i>Chlamydomonas reinhardtii</i> adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that <i>Chlamydomonas</i> exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of <i>Chlamydomonas</i> in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13417","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gansulinema gen. nov. and Komarkovaeasiopsis gen. nov.: Novel Oculatellacean genera (Cyanobacteria) isolated from desert soils and hot spring Gansulinema gen:从沙漠土壤和温泉中分离出的新的腔肠动物属(蓝藻)。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-10 DOI: 10.1111/jpy.13426
Fangfang Cai, Shuheng Li, Jiaxin Chen, Renhui Li
{"title":"Gansulinema gen. nov. and Komarkovaeasiopsis gen. nov.: Novel Oculatellacean genera (Cyanobacteria) isolated from desert soils and hot spring","authors":"Fangfang Cai,&nbsp;Shuheng Li,&nbsp;Jiaxin Chen,&nbsp;Renhui Li","doi":"10.1111/jpy.13426","DOIUrl":"10.1111/jpy.13426","url":null,"abstract":"<p>To increase the understanding of simple thin filamentous cyanobacteria in harsh environmental areas, we previously isolated and identified four strains (XN101, XN102, GS121, NX122) from desert soils and hot spring in China. As a result, two new Oculatellacean genera of these four strains, <i>Gansulinema</i> gen. nov. and <i>Komarkovaeasiopsis</i> gen. nov., are described based on a polyphasic approach. The ultrastructure of these strains showed a similar arrangement of peripheral thylakoids with three to four parallel layers, indicating that they belonged to the orders Nodosilineales, Oculatellales, or Leptolyngbyales. In the 16S rRNA gene phylogeny, two sequences of the <i>Gansulinema</i> strains and the two sequences of the <i>Komarkovaeasiopsis</i> strains formed two independent and robust clusters, within the order Oculatellales. The 16S rRNA gene sequences of strains of <i>Komarkovaeasiopsis</i> and <i>Gansulinema</i> showed low identity to each other (≤93.2%) and to other sequences of the Oculatellacean genera (≤94.5% and ≤93.3%, respectively). Furthermore, the 16S–23S internal transcribed spacer rRNA region secondary structures of strains of <i>Komarkovaeasiopsis</i> and <i>Gansulinema</i> were not consistent with all existing descriptions of Oculatellacean taxa. These data suggest that cyanobacterial communities are rich sources of new taxa in under-exploited areas, such as desert soils and hot spring in China.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiviral discovery in toxic cyanobacteria: Low hanging fruit in the age of pandemics 有毒蓝藻中的抗病毒发现:大流行病时代的低悬果实。
IF 2.9 3区 生物学
Journal of Phycology Pub Date : 2024-01-04 DOI: 10.1111/jpy.13425
Sally Zheng, Victoria Lee, Isaac Meza-Padilla, Jozef I. Nissimov
{"title":"Antiviral discovery in toxic cyanobacteria: Low hanging fruit in the age of pandemics","authors":"Sally Zheng,&nbsp;Victoria Lee,&nbsp;Isaac Meza-Padilla,&nbsp;Jozef I. Nissimov","doi":"10.1111/jpy.13425","DOIUrl":"10.1111/jpy.13425","url":null,"abstract":"<p>The power of novel vaccination technologies and their rapid development were elucidated clearly during the COVID-19 pandemic. At the same time, it also became clear that there is an urgent need to discover and manufacture new antivirals that target emerging viral threats. Toxic species of cyanobacteria produce a range of bioactive compounds that makes them good candidates for drug discovery. Nevertheless, few studies demonstrate the antiviral potential of cyanobacteria. This is partly due to the lack of specific and simple protocols designed for the rapid detection of antiviral activity in cyanobacteria and partly because specialized facilities for work with pathogenic viruses are few and far between. We therefore developed an easy method for the screening of cyanobacterial cultures for antiviral activity and used our private culture collection of non-pathogenic virus isolates to show that antiviral activity is a prominent feature in the cyanobacterium <i>Microcystis aeruginosa.</i> In this proof-of-concept study, we show that <i>M. aeruginosa</i> extracts from three different cyanobacterial strains delay infection of diatom-infecting single-stranded DNA and single-stranded RNA viruses by up to 2 days. Our work shows the ease with which cyanobacteria from culture collections can be screened for antiviral activity and highlights the potential of cyanobacteria as an excellent source for the discovery of novel antiviral compounds, warranting further investigation.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信