{"title":"Microcystin production is important for toxic Microcystis to survive long-term nitrogen starvation","authors":"Xiao-Ya Lian, Guo-Wei Qiu, Wen-Can Zheng, Jin-Long Shang, Hai-Feng Xu, Guo-Zheng Dai, Nan-Qin Gan, Zhong-Chun Zhang, Bao-Sheng Qiu","doi":"10.1111/jpy.70009","DOIUrl":null,"url":null,"abstract":"<p>Toxic cyanobacterial blooms have expanded and intensified on a global scale. Although microcystins are known as the most abundant cyanotoxins released during cyanobacterial blooms, the physiological role of these toxic secondary metabolites has not been fully resolved. Here, we show that microcystin production is important for toxic <i>Microcystis</i> to maintain carbon metabolism under long-term nitrogen starvation and subsequent recovery. Compared to carbon metabolism in the nonmicrocystin-producing strains, toxic <i>Microcystis</i> could accumulate more carbon reserves under nitrogen limitation, which is important for the survival of cells under stressful conditions. Transcriptomic analysis revealed that the genes involved in microcystin synthesis were significantly up-regulated at the initial recovery phase, indicating their essential role in strengthening glycogen catabolism and fueling recovery. Flow cytometry analysis showed that compared to nontoxic strains, microcystin-producing <i>Microcystis</i> exhibited a higher survival and recovery rate after prolonged nitrogen starvation, which is consistent with the dominance of these species at the early stage of cyanobacterial blooms. The close genetic traits between <i>Microcystis</i> strains suggest that the strategies observed here might be highly conserved. Our results imply that toxic <i>Microcystis</i> establishes a competitive advantage over nontoxic species and provides insights into the seasonal succession of natural <i>Microcystis</i> populations.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":"61 2","pages":"379-392"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.70009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxic cyanobacterial blooms have expanded and intensified on a global scale. Although microcystins are known as the most abundant cyanotoxins released during cyanobacterial blooms, the physiological role of these toxic secondary metabolites has not been fully resolved. Here, we show that microcystin production is important for toxic Microcystis to maintain carbon metabolism under long-term nitrogen starvation and subsequent recovery. Compared to carbon metabolism in the nonmicrocystin-producing strains, toxic Microcystis could accumulate more carbon reserves under nitrogen limitation, which is important for the survival of cells under stressful conditions. Transcriptomic analysis revealed that the genes involved in microcystin synthesis were significantly up-regulated at the initial recovery phase, indicating their essential role in strengthening glycogen catabolism and fueling recovery. Flow cytometry analysis showed that compared to nontoxic strains, microcystin-producing Microcystis exhibited a higher survival and recovery rate after prolonged nitrogen starvation, which is consistent with the dominance of these species at the early stage of cyanobacterial blooms. The close genetic traits between Microcystis strains suggest that the strategies observed here might be highly conserved. Our results imply that toxic Microcystis establishes a competitive advantage over nontoxic species and provides insights into the seasonal succession of natural Microcystis populations.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.