Journal of Physical Organic Chemistry最新文献

筛选
英文 中文
Torsional influences on cross-conjugated thieno[3,4-b]thiophene photochromes 扭转对交叉共轭噻吩并[3,4-b]噻吩光色团的影响
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-08-01 DOI: 10.1002/poc.4650
Nicholas P. Adams, John D. Tovar
{"title":"Torsional influences on cross-conjugated thieno[3,4-b]thiophene photochromes","authors":"Nicholas P. Adams,&nbsp;John D. Tovar","doi":"10.1002/poc.4650","DOIUrl":"10.1002/poc.4650","url":null,"abstract":"<p>Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side-chain appendages or through formal conjugation along a π-conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4-<i>b</i>]thiophene (<b>TT</b>)-based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π-conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π-conjugated materials.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study of atomic electronegativity effects on the excited-state behavior of fluorescent compounds of citrinin 原子电负性对柠檬素荧光化合物激发态行为影响的理论研究
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-23 DOI: 10.1002/poc.4651
Yue Gao, Meiheng Lv, Zexu Cai, Yuhang Zhang, Tingting Wang, Jianyong Liu, Fangjian Shang, Wenze Li
{"title":"Theoretical study of atomic electronegativity effects on the excited-state behavior of fluorescent compounds of citrinin","authors":"Yue Gao,&nbsp;Meiheng Lv,&nbsp;Zexu Cai,&nbsp;Yuhang Zhang,&nbsp;Tingting Wang,&nbsp;Jianyong Liu,&nbsp;Fangjian Shang,&nbsp;Wenze Li","doi":"10.1002/poc.4651","DOIUrl":"10.1002/poc.4651","url":null,"abstract":"<p>The present work focuses on the light-induced behavior of citrinin derivatives in relation to atomic electronegativity. A detailed theoretical study on the photophysical properties and excited-state behavior of fluorescent compounds of citrinin (Cit-O, Cit-S, and Cit-Se, with different atomic electronegativity) has been conducted, and the effect of electronegativity on the proton transfer in this system has been explained. First, the relevant hydrogen bond parameters and infrared vibrational spectra of the optimized geometrical configurations have been insightfully investigated. It is elucidated that the hydrogen bond is strengthened after photoexcitation, and it provides a driving force for excited-state intramolecular proton transfer (ESIPT). In addition, the frontier molecular orbitals were analyzed, and the intramolecular charge transfer process in all Cit systems, the phenomenon of charge redistribution, facilitates the ESIPT reaction. By constructing potential energy surfaces for different transfer paths, the atomic electronegativity impact on the ESIPT dynamical behavior of the Cit system was determined. This work clarifies the mechanism of the intramolecular proton transfer process in the excited state of citrinin molecules and complements the theoretical study of the atomic electronegativity-regulated citrinin system, which provides a corresponding theoretical basis for the design and synthesis of new luminescence-adjustable citrinin systems.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density functional theory study on frustrated Lewis pairs catalyzed C-H activation of heteroarenes: Mechanism variation tuning by electronic effect 关于受挫路易斯对催化的杂环烯 C-H 活化的密度泛函理论研究:电子效应对机理变化的调整
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-22 DOI: 10.1002/poc.4652
Youxiang Shao, Kang Xiao, Huize Wang, Yalan Liu
{"title":"Density functional theory study on frustrated Lewis pairs catalyzed C-H activation of heteroarenes: Mechanism variation tuning by electronic effect","authors":"Youxiang Shao,&nbsp;Kang Xiao,&nbsp;Huize Wang,&nbsp;Yalan Liu","doi":"10.1002/poc.4652","DOIUrl":"10.1002/poc.4652","url":null,"abstract":"<p>Unreactive C-H bond activation is a new horizon for frustrated Lewis pairs (FLPs) chemistry. Although concerted mechanism (Science 2015, 349, 513) and stepwise carbene mechanism (Org. Lett. 2018, 20, 1102) have been proposed for the FLPs catalyzed C-H bond activation of 1-methylpyrrole, the influence of electronic properties of FLPs on the reaction mechanism is far away from well-understood. In this study, an assortment of P-B type FLPs with different electronic characteristic was employed to study the catalyzed C-H bond activation of 1-methylpyrrole by using density functional theory calculations. Detailed calculations demonstrated that the reactivity variation and the reaction mechanism binary of FLPs catalyzed C-H activation can be varied by tuning electronic effect of Lewis base center. On the one hand, the concerted C-H activation reactivity is mainly controlled by the electron donation of the lone pair of Lewis base center; thus, the FLPs with electron-donating substituents <b>(FLP1</b>, <b>FLP2</b>, and <b>FLP3)</b> catalyzed the C-H bond activation through concerted mechanism. On the other hand, the reactivity of stepwise carbene mechanism is mostly attributed to the vacant orbital of Lewis acid center; as a result, the <b>FLP5</b> bearing -P(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> preferred to catalyzed the bond activation through concerted mechanism. In contrast, a metathesis mechanism through strained four-membered ring transition state is less feasible. These results should provide deeper insight and broader perspective to understand the structure and function of FLPs for rational design of FLPs catalyzed C-H bond activation.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive charge delocalization and anti-aromaticity of cations generated by protonation of benzo[a]fluoranthenes in superacid 苯并[a]荧蒽在超酸中质子化产生的阳离子的正电荷分散和反芳香性
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-14 DOI: 10.1002/poc.4647
Takao Okazaki, Haruki Yamashita, Toshikazu Kitagawa
{"title":"Positive charge delocalization and anti-aromaticity of cations generated by protonation of benzo[a]fluoranthenes in superacid","authors":"Takao Okazaki,&nbsp;Haruki Yamashita,&nbsp;Toshikazu Kitagawa","doi":"10.1002/poc.4647","DOIUrl":"10.1002/poc.4647","url":null,"abstract":"<p>Benzo[<i>a</i>]fluoranthene (<b>4a</b>) is one of non-alternate polycyclic aromatic hydrocarbons. A reaction of <b>4a</b> in CF<sub>3</sub>SO<sub>3</sub>H yielded a dark yellow solution. Direct NMR observation indicated the exclusive formation of carbocation <b>4aH</b><sup><b>+</b></sup> by protonation at the C(8) position. The most deshielded <sup>1</sup>H and <sup>13</sup>C signals were observed at 8.99 ppm for H(12) and 8.29 ppm for H(1), 182.6 ppm for C(12b), 155.6 ppm for C(8a), and 149.4 ppm for C(7a). The signals for H(4) and H(5) were significantly more shielded than those of <b>4a</b>. A reaction of 3-<i>tert</i>-butylbenzo[<i>a</i>]fluoranthene (<b>4b</b>) in CF<sub>3</sub>SO<sub>3</sub>H afforded carbocation <b>4bH</b><sup><b>+</b></sup> by the protonation at the C(8) position. <b>4bH</b><sup><b>+</b></sup> was gradually converted to <b>4aH</b><sup><b>+</b></sup>. The changes in <sup>13</sup>C NMR chemical shifts (Δδ<sup>13</sup>C) suggested that positive charge was delocalized into mainly seven carbons in <b>4aH</b><sup><b>+</b></sup> and <b>4bH</b><sup><b>+</b></sup>. The observed cations were found to be the most stable cations among the possible protonation cations by the DFT method. The NICS(1)<sub><i>zz</i></sub> values for the five-membered rings were calculated to be 35.6 for <b>4aH</b><sup><b>+</b></sup> and 34.4 for <b>4bH</b><sup><b>+</b></sup> by GIAO-B3LYP/6-311+G(2d,p). The experimental NMR and the NICS(1)<sub><i>zz</i></sub> data indicated that the five-membered rings in <b>4aH</b><sup><b>+</b></sup> and <b>4bH</b><sup><b>+</b></sup> exhibited anti-aromaticity.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of halogen substituents on sensitivity towards detonation of polycyclic nitroaromatic high-energy molecules 卤素取代基对多环硝基芳香族高能分子引爆敏感性的影响
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-12 DOI: 10.1002/poc.4649
Ivana S. Veljković, Aleksandra B. Đunović, Dušan Ž. Veljković
{"title":"Influence of halogen substituents on sensitivity towards detonation of polycyclic nitroaromatic high-energy molecules","authors":"Ivana S. Veljković,&nbsp;Aleksandra B. Đunović,&nbsp;Dušan Ž. Veljković","doi":"10.1002/poc.4649","DOIUrl":"10.1002/poc.4649","url":null,"abstract":"<p>Analysis of molecular electrostatic potential (MEP) on the surface of high-energy molecules is often used to predict detonation properties of these compounds since strong positive values of electrostatic potentials in the central molecular regions are related to the high sensitivity towards detonation. In this work, we combined bond dissociation energy (BDE) calculations with analysis of the MEPs to reveal the influence of the halogen substituents on the sensitivities towards detonation of a series of halogen-substituted dinitronaphthalenes. Obtained results showed that halogen substituents affect detonation properties of the studied molecules by tilting the neighboring NO<sub>2</sub> groups, which results in decreased stability of corresponding C–N bonds. In addition, halogen atoms affect the detonation properties of studied molecules by modifying the positive values of the electrostatic potentials in the central regions of the molecular surfaces.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the specific chemistries of the cycloaddition reactions of 5-benzoyl-3(2H)-isothiazolone and stable nitrile oxides: Insights from Density Functional Theory analysis 探索 5-苯甲酰基-3(2H)-异噻唑酮和稳定腈氧化物环化反应的特殊化学性质:密度泛函理论分析的启示
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-11 DOI: 10.1002/poc.4645
Muntaka Is-mail, Albert Aniagyei, Caroline R. Kwawu, Gabriel Amankwah, Elliot Menkah, Evans Adei
{"title":"Exploring the specific chemistries of the cycloaddition reactions of 5-benzoyl-3(2H)-isothiazolone and stable nitrile oxides: Insights from Density Functional Theory analysis","authors":"Muntaka Is-mail,&nbsp;Albert Aniagyei,&nbsp;Caroline R. Kwawu,&nbsp;Gabriel Amankwah,&nbsp;Elliot Menkah,&nbsp;Evans Adei","doi":"10.1002/poc.4645","DOIUrl":"10.1002/poc.4645","url":null,"abstract":"<p>Isothiazolones are important heterocyclics with pharmacological potency such as anti-inflammatory, anticancer, antimicrobial, and robust biocidal (used in agrochemicals). This study seeks to provide mechanistic insight into the chemo- and regio-selectivities of the [3 + 2] cycloaddition reaction of 5-benzoyl-3(2<i>H</i>)-isothiazolone (<b>A1</b>) with two stable nitrile oxides, that is, mesitonitrile oxide (<b>A2</b>) and dichlorobenzonitrile oxide (<b>A3</b>) using M06-2X hybrid density functional calculations coupled with the 6-311G (d, p) basis sets. Mesitonitrile oxide <b>A2</b> chemo-selectively adds across the carbonyl of the benzyl group of <b>A1</b> while dichloro benzonitrile oxide <b>A3</b> preferentially adds across the ethylene center of <b>A1</b>. Derivatization of <b>A1</b> with electron-donating groups lowers the activation barriers by a very minute margin ranging from 0.1 to 0.5 kcal/mol whereas electron-withdrawing groups significantly decrease the energetics of the reaction by a margin of 1.1 to 2.5 kcal/mol. Solvation with chloroform does not affect the selectivity of the reaction but tends to increase both activation and reaction energies of the various routes. Analysis of the Parr function on different reactive sites of <b>A1</b> shows the addition of <b>A2</b> via the atomic center with the largest Mullikan atomic spin densities. Substitution of the S-heteroatom with C, O, or N does not affect the regioselectivity of the reaction but lowers the activation energies in the reaction of <b>A1</b> with <b>A3</b>. The global electron density transfer (GEDT) values predict a polar reaction between <b>A1</b> and <b>A2</b> whereas the reaction of <b>A1</b> and <b>A3</b> is non-polar.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring regioselectivity in 1,3-dipolar cycloaddition of thioamides, selenoamides, and amides with propadienyl cation derivatives using density functional theory 利用密度泛函理论探索硫代酰胺、硒代酰胺和酰胺与丙二烯阳离子衍生物进行 1,3 双极环加成时的区域选择性
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-04 DOI: 10.1002/poc.4646
Vanishree Shankar Naik, Ganga Periyasamy
{"title":"Exploring regioselectivity in 1,3-dipolar cycloaddition of thioamides, selenoamides, and amides with propadienyl cation derivatives using density functional theory","authors":"Vanishree Shankar Naik,&nbsp;Ganga Periyasamy","doi":"10.1002/poc.4646","DOIUrl":"10.1002/poc.4646","url":null,"abstract":"<p>This study explores the potential mechanisms (Paths 1 and 2) involved in the regioselective dipolar cycloaddition of thioamides, selenoamides, and amides with propargyl alcohol using density functional theory (DFT). Our calculations reveal that the initial step involves the formation of a cation with catalyst. Subsequently, isomerization occurs between cations I and II via 1,3-hydride transfer in the second step. We analyzed the global reactivity index and frontier molecular orbital (FMO) theory to gain insights into the mechanism. In the third step, chalcoamides attack cations I and II, forming an intermediate. The formation of a five-member ring intermediate constitutes the fourth step, followed by hydrogen transfer to produce stable five-member heterazole compounds in the final step. We demonstrated the influence of substituents in the electrophile by employing various electron-withdrawing and donating groups. Additionally, we examined the effect of the dielectric medium on the reaction barrier using polarizable continuum model. Thus, this study provides valuable insights for the rational design of more efficient 1,3-dipolar cycloaddition reactions yielding regioselective products.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paddlanes revisited: Which are the smallest possible? 重新审视 Paddlanes:哪些是最小的?
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-07-01 DOI: 10.1002/poc.4644
Gary W. Breton
{"title":"Paddlanes revisited: Which are the smallest possible?","authors":"Gary W. Breton","doi":"10.1002/poc.4644","DOIUrl":"10.1002/poc.4644","url":null,"abstract":"<p>Paddlanes are tricyclic molecules with four bridging chains that share the same two bridgehead carbon atoms. The smallest known paddlane containing only carbon atoms in the main framework has a total of 18 atoms. We utilized computational chemistry (MP2/cc-pVTZ) to locate the smallest possible all-carbon paddlanes that meet the criterion suggested by Hoffmann, Schleyer, and Schaefer as being “fleeting,” meaning frequency calculations suggest the structures are energy minima on their respective potential energy surfaces (PES). Our results suggest that paddlane compounds with a total of 10 or fewer atoms can be considered to be non-viable either because they are not energy minima on the PES or due to strain in the system that manifests as especially long carbon–carbon bonds. Some paddlanes with a total of 11 carbon atoms proved to be energy minima but still exhibited longer carbon–carbon bonds than normal. Finally, several paddlanes with a total of 12 carbons appear to be the least strained since carbon–carbon bond lengths remain reasonable.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue devoted to the 15th Latin American Conference on Physical Organic Chemistry (CLAFQO-15) 第 15 届拉丁美洲物理有机化学会议(CLAFQO-15)特刊
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-06-14 DOI: 10.1002/poc.4643
Vanderlei Gageiro Machado
{"title":"Special issue devoted to the 15th Latin American Conference on Physical Organic Chemistry (CLAFQO-15)","authors":"Vanderlei Gageiro Machado","doi":"10.1002/poc.4643","DOIUrl":"10.1002/poc.4643","url":null,"abstract":"<p>The Latin American Conference on Physical Organic Chemistry (CLAFQO) is recognized as the most important meeting of Physical Organic Chemistry in Latin America. <b>CLAFQO-15</b> took place in Santa Catarina, Brazil, from November 13 to 18, 2022. The Conference was attended by 208 researchers. This special issue of the JPOC includes a total of 7 contributions based on works presented at the CLAFQO-15, representing a significant sample of the high quality of the work presented during the Conference.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 7","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4643","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141339416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taming the 1,5-sigmatropic shift across protonated spirocyclic 4H-pyrazoles 控制质子化螺环 4H 吡唑的 1,5-sigmatropic 漂移
IF 1.9 4区 化学
Journal of Physical Organic Chemistry Pub Date : 2024-06-07 DOI: 10.1002/poc.4642
Brian J. Levandowski, Brian J. Graham, Nile S. Abularrage, Ronald T. Raines
{"title":"Taming the 1,5-sigmatropic shift across protonated spirocyclic 4H-pyrazoles","authors":"Brian J. Levandowski,&nbsp;Brian J. Graham,&nbsp;Nile S. Abularrage,&nbsp;Ronald T. Raines","doi":"10.1002/poc.4642","DOIUrl":"10.1002/poc.4642","url":null,"abstract":"<p>The condensation of 1,3-diketones with hydrazine to access 4<i>H</i>-pyrazoles is a well-established synthetic route that travels through a 4<i>H</i>-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4<i>H</i>-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict, and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[<i>c</i>]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.2 × 10<sup>5</sup>-fold and enables the isolation of new spirocyclic 4<i>H</i>-pyrazoles for click chemistry.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 9","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信