{"title":"Unexpected Inhibition of the Knoevenagel Condensation in Methanol by Iodonium Salt Served as Electrophilic Activator","authors":"Alexandra A. Sysoeva","doi":"10.1002/poc.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Halogen bond donors are recognized as electrophilic catalysts in reactions involving carbonyl compounds. This study describes an unexpected inhibition of the Knoevenagel condensation by the catalyst. To elucidate the intricacies of the inhibition mechanism, the overall reaction order and rate constants were determined using <sup>1</sup>H NMR spectroscopy, and further experiments with different nucleophiles were conducted. The findings revealed that the inhibition of the primary reaction is attributed to a substantial acceleration of the side reaction involving aldehyde methanolysis, which hinders the formation of the final alkene product.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70006","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Halogen bond donors are recognized as electrophilic catalysts in reactions involving carbonyl compounds. This study describes an unexpected inhibition of the Knoevenagel condensation by the catalyst. To elucidate the intricacies of the inhibition mechanism, the overall reaction order and rate constants were determined using 1H NMR spectroscopy, and further experiments with different nucleophiles were conducted. The findings revealed that the inhibition of the primary reaction is attributed to a substantial acceleration of the side reaction involving aldehyde methanolysis, which hinders the formation of the final alkene product.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.