The Importance of Strain on the Relative Energies of Bridgehead Radicals

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Gary W. Breton
{"title":"The Importance of Strain on the Relative Energies of Bridgehead Radicals","authors":"Gary W. Breton","doi":"10.1002/poc.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bridgehead radicals are increasingly commonly-encountered intermediates in organic chemistry. These carbon-centered radicals, however, may experience unique strain energies due to pyramidalization at the bridgehead carbon as enforced by the bicyclic frameworks. In this study, a series of related bicyclic bridgehead radicals were analyzed using the G3MP2B3 computational protocol. The adamantyl and cubyl radicals were also included in the study. The energies of the radicals were analyzed with reference to the similarly-substituted <i>tert</i>-butyl radical via a hyperhomodesmotic equation. While the relative energies were found to weakly correlate with the change in pyramidalization at the bridgehead carbons upon radical formation, a much stronger correlation was observed with the difference in strain energies between the saturated bicyclic compounds and the corresponding bridgehead radicals.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70004","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Bridgehead radicals are increasingly commonly-encountered intermediates in organic chemistry. These carbon-centered radicals, however, may experience unique strain energies due to pyramidalization at the bridgehead carbon as enforced by the bicyclic frameworks. In this study, a series of related bicyclic bridgehead radicals were analyzed using the G3MP2B3 computational protocol. The adamantyl and cubyl radicals were also included in the study. The energies of the radicals were analyzed with reference to the similarly-substituted tert-butyl radical via a hyperhomodesmotic equation. While the relative energies were found to weakly correlate with the change in pyramidalization at the bridgehead carbons upon radical formation, a much stronger correlation was observed with the difference in strain energies between the saturated bicyclic compounds and the corresponding bridgehead radicals.

Abstract Image

应变对桥头自由基相对能量的重要性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信