不正确使用NICS对基态和激发态多环分子芳香性的错误识别

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Péter J. Mayer, Henrik Ottosson
{"title":"不正确使用NICS对基态和激发态多环分子芳香性的错误识别","authors":"Péter J. Mayer,&nbsp;Henrik Ottosson","doi":"10.1002/poc.70000","DOIUrl":null,"url":null,"abstract":"<p>Aromaticity is a key concept in physical organic chemistry. However, as it cannot be measured directly, it is assessed indirectly via other properties (energetic, electronic, geometric and magnetic). Although these properties describe aromaticity, they are not solely related to aromaticity as the observed values also can stem from, for example, magnetically induced local currents at certain atoms or groups, or strain in the σ-skeleton. This can lead to misinterpretations. Here, we highlight a pitfall in the (anti)aromaticity assessment of polycyclic molecules when it is mainly based on nucleus independent chemical shifts (NICSs). The NICS index can be misinterpreted to indicate ‘aromaticity’ or ‘antiaromaticity’ in nonaromatic rings as a result of paratropic or diatropic ring currents in adjacent rings. We explore if such false indications by NICS are (i) stronger in Baird-aromatic or -antiaromatic excited states (mainly triplet and quintet, but also singlet) than in closed-shell singlet ground states, and (ii) if a paratropic ring current in an adjacent ring causes stronger or weaker false ‘aromaticity’ than a diatropic one causes false ‘antiaromaticity’. Based on our computations we conclude that larger aromatic rings in all types of states (e.g., a triplet state Baird-aromatic cyclooctatetraene ring) have greater influence than smaller ones, yet, we see no indication that the effect is stronger in excited states. Instead, annulene rings are more influential in their paratropic (antiaromatic) states, regardless if ground or excited states, than in their diatropic (aromatic) ones.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.70000","citationCount":"0","resultStr":"{\"title\":\"False Identification of (Anti)aromaticity in Polycyclic Molecules in Ground and Excited States Through Incorrect Use of NICS\",\"authors\":\"Péter J. Mayer,&nbsp;Henrik Ottosson\",\"doi\":\"10.1002/poc.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aromaticity is a key concept in physical organic chemistry. However, as it cannot be measured directly, it is assessed indirectly via other properties (energetic, electronic, geometric and magnetic). Although these properties describe aromaticity, they are not solely related to aromaticity as the observed values also can stem from, for example, magnetically induced local currents at certain atoms or groups, or strain in the σ-skeleton. This can lead to misinterpretations. Here, we highlight a pitfall in the (anti)aromaticity assessment of polycyclic molecules when it is mainly based on nucleus independent chemical shifts (NICSs). The NICS index can be misinterpreted to indicate ‘aromaticity’ or ‘antiaromaticity’ in nonaromatic rings as a result of paratropic or diatropic ring currents in adjacent rings. We explore if such false indications by NICS are (i) stronger in Baird-aromatic or -antiaromatic excited states (mainly triplet and quintet, but also singlet) than in closed-shell singlet ground states, and (ii) if a paratropic ring current in an adjacent ring causes stronger or weaker false ‘aromaticity’ than a diatropic one causes false ‘antiaromaticity’. Based on our computations we conclude that larger aromatic rings in all types of states (e.g., a triplet state Baird-aromatic cyclooctatetraene ring) have greater influence than smaller ones, yet, we see no indication that the effect is stronger in excited states. Instead, annulene rings are more influential in their paratropic (antiaromatic) states, regardless if ground or excited states, than in their diatropic (aromatic) ones.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.70000\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70000","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

芳香性是物理有机化学中的一个重要概念。然而,由于它不能直接测量,因此可以通过其他性质(能量、电子、几何和磁性)间接评估。虽然这些性质描述了芳香性,但它们并不仅仅与芳香性有关,因为观察到的值也可能源于某些原子或基团的磁诱导局部电流,或者σ-骨架中的应变。这可能会导致误解。在这里,我们强调了多环分子(抗)芳香性评估中的一个缺陷,当它主要基于核无关化学位移(nic)时。由于相邻环中的顺向或反向环电流,NICS指数可能被误解为表示非芳香环中的“芳香性”或“反芳香性”。我们探索NICS的这些错误指示是否(i)在baird -芳激发态或-反芳激发态(主要是三重态和五重态,但也有单重态)中比在闭壳单重态基态中更强,以及(ii)在相邻环中的顺向环电流是否比顺向环电流导致的假“反芳性”更强或更弱。根据我们的计算,我们得出结论,在所有类型的状态下,较大的芳环(例如,三态baird -芳环四烯环)比较小的芳环有更大的影响,然而,我们没有看到任何迹象表明这种影响在激发态更强。相反,无论是基态还是激发态,环烯环在异向性(反芳香族)态比在异向性(芳香族)态更有影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

False Identification of (Anti)aromaticity in Polycyclic Molecules in Ground and Excited States Through Incorrect Use of NICS

False Identification of (Anti)aromaticity in Polycyclic Molecules in Ground and Excited States Through Incorrect Use of NICS

Aromaticity is a key concept in physical organic chemistry. However, as it cannot be measured directly, it is assessed indirectly via other properties (energetic, electronic, geometric and magnetic). Although these properties describe aromaticity, they are not solely related to aromaticity as the observed values also can stem from, for example, magnetically induced local currents at certain atoms or groups, or strain in the σ-skeleton. This can lead to misinterpretations. Here, we highlight a pitfall in the (anti)aromaticity assessment of polycyclic molecules when it is mainly based on nucleus independent chemical shifts (NICSs). The NICS index can be misinterpreted to indicate ‘aromaticity’ or ‘antiaromaticity’ in nonaromatic rings as a result of paratropic or diatropic ring currents in adjacent rings. We explore if such false indications by NICS are (i) stronger in Baird-aromatic or -antiaromatic excited states (mainly triplet and quintet, but also singlet) than in closed-shell singlet ground states, and (ii) if a paratropic ring current in an adjacent ring causes stronger or weaker false ‘aromaticity’ than a diatropic one causes false ‘antiaromaticity’. Based on our computations we conclude that larger aromatic rings in all types of states (e.g., a triplet state Baird-aromatic cyclooctatetraene ring) have greater influence than smaller ones, yet, we see no indication that the effect is stronger in excited states. Instead, annulene rings are more influential in their paratropic (antiaromatic) states, regardless if ground or excited states, than in their diatropic (aromatic) ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信