{"title":"Radiation protection of W–Al composite films/coatings for aviation using genetic algorithms","authors":"Shiqi Chen, Liu Yang, Jun Shen","doi":"10.1016/j.jpcs.2024.112429","DOIUrl":"10.1016/j.jpcs.2024.112429","url":null,"abstract":"<div><div>This study evaluated electron shielding capabilities of various materials using Geant4 Monte Carlo software. By analyzing materials with different atomic numbers, we designed and tested composite films and coatings for radiation protection. Under 1.2 MeV electron irradiation, these materials reduced the dose deposited in electronic components by over 70 %. The fabricated composite films (W–Al) reduced the actual total dose by 100 % with a 30.67 % mass increase, closely matching the simulation result of 75.36 %. The composite coatings (W–Al) reduced the dose by 89.2 % with a 33 % mass increase, matching the simulation result of 70 %. Cascade collision simulations revealed that higher PKA energies lead to longer times to reach the thermal peak, more peak defects, and more stable defect pairs. This is due to the displacement threshold energy of the atoms in aluminum and tungsten. These results demonstrate the effectiveness of our composite films and coatings in enhancing electron shielding performance and validate our design methods.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112429"},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of electrochemical properties of Pt-WO3 nanocomposite thin films for supercapacitor applications","authors":"Reenu Rani , Ashwani Kumar , Meenakshi Sharma , Brij Mohan , Rinku Kumar , Ramesh Chandra , V.K. Malik","doi":"10.1016/j.jpcs.2024.112428","DOIUrl":"10.1016/j.jpcs.2024.112428","url":null,"abstract":"<div><div>In this study, we investigated the impact of Platinum (Pt) nanocomposite incorporation on the electrochemical properties of Tungsten oxide (WO<sub>3</sub>) thin films. The binder free sputtered grown thin film electrode of Pt-WO<sub>3</sub> nanocomposite shows modified structural and improved electrochemical characteristics. Pt incorporation improved electron transfer in WO<sub>3</sub> matrix, and morphology (Nano-porous like) consequently enhance specific capacitance value and stability of electrode. The specific capacitance (C<sub>s</sub>) of the Pt-WO<sub>3</sub> nanocomposite electrode measured 559 Fg<sup>−1</sup> at 0.02 A g<sup>−1</sup>, almost double the value obtained for the pure WO<sub>3</sub> electrode (225 Fg<sup>−1</sup>), and demonstrate excellent cyclic stability over 5000 cycles. These findings suggest that Pt-WO₃ nanocomposites hold significant potential as electrode materials for advanced supercapacitor devices, offering both high energy storage capacity and excellent long-term stability.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112428"},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Zahir Iqbal , Hussain Tariq , Ayesha Zakir , Asma Khizar , Abhinav Kumar , Moonis Ali Khan
{"title":"Synergistic interface engineering of tungsten disulfide (WS2) with iron-cobalt-tellurium-zirconium (FeCoTeZr) for supercapattery devices","authors":"Muhammad Zahir Iqbal , Hussain Tariq , Ayesha Zakir , Asma Khizar , Abhinav Kumar , Moonis Ali Khan","doi":"10.1016/j.jpcs.2024.112425","DOIUrl":"10.1016/j.jpcs.2024.112425","url":null,"abstract":"<div><div>The increasing reliance on renewable energy sources has intensified the need for advanced energy storage technologies. Hybrid energy storage devices (HESDs) present a promising approach, combining both power and energy density. In this study, the energy storage performance of tungsten disulfide <span><math><mrow><mo>(</mo><msub><mtext>WS</mtext><mn>2</mn></msub><mo>)</mo></mrow></math></span> is enhanced by introducing an iron-cobalt-tellurium-zirconium (FeCoTeZr) alloy as an interfacial layer. This layer, deposited using a binder-free magnetron sputtering method, resolves the conductivity mismatch between the nickel foam (NF) substrate and <span><math><mrow><msub><mtext>WS</mtext><mn>2</mn></msub></mrow></math></span>, significantly improving device performance. The structural characteristics (SEM, XRD, Raman, and EDX) and electrochemical activities (CV, GCD, and EIS) of the prepared samples were acquired. The electrodes were subsequently used as a faradaic-dominated electrode in conjunction with activated carbon as electrochemical double-layer capacitor (EDLC) electrode in a real device. The high-efficiency WS₂/FeCoTeZr device achieved an energy density of 55 Wh/kg and a power density of 4250 W/kg, while retaining 97.9 % of its capacity after 3000 GCD cycles. Additionally, the device's capacitive and diffusive behaviors were analyzed using two modeling techniques. This novel strategy emphasizes the significant potential of interfacial-layer-enhanced HESDs as a cutting-edge solution for future energy storage systems.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112425"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Light-driven enhancement of CO2 hydrogenation via nickel loading and oxygen vacancy formed on indium oxide","authors":"Xinyu Jia, Weihong Jiao, Jia Jia, Jie Ling, Zhiwei Shi, Anning Zhou","doi":"10.1016/j.jpcs.2024.112426","DOIUrl":"10.1016/j.jpcs.2024.112426","url":null,"abstract":"<div><div>Photothermal catalysis is an efficient approach for CO<sub>2</sub> conversion. Herein, the light-driven enhancement of CO<sub>2</sub> hydrogenation via nickel loading and oxygen vacancy formed on indium oxide was investigated. The 5.17 wt% Ni/In<sub>2</sub>O<sub>3-x</sub> catalyst exhibited a CO<sub>2</sub> conversion of ∼32 % with a CO production rate of 14.4 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> under visible light irradiation at 300 °C. The photothermal catalytic activity was four times that of the thermocatalytic reaction and over twice that of In<sub>2</sub>O<sub>3-x</sub> under the same photothermal conditions. Structural characterization methods, including XRD, TEM, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD, and XPS, confirmed the importance of suppressing the over-reduction of the Ni–In<sub>2</sub>O<sub>3-x</sub> interface, to maintain both metallic Ni and oxygen vacancies for the photothermal CO<sub>2</sub> conversion. UV–vis absorption, PL, XPS, and DFT calculation results verified the positive effect of the Ni loading and the formation of oxygen vacancies on enhancing visible light absorption and photoelectron-hole separation of Ni/In<sub>2</sub>O<sub>3-x</sub>, thus providing more photoelectrons for CO<sub>2</sub> conversion to CO. Additionally, the increasing metallic Ni phase and the regeneration of oxygen vacancies induced by visible light irradiation were discovered. The synergistic effect of the Ni loading and oxygen vacancies on In<sub>2</sub>O<sub>3-x</sub> plays a key role in enhancing the photothermal catalytic CO<sub>2</sub> hydrogenation.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112426"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir V. Poborchii , Alexander A. Shklyaev , Alexander V. Fokin
{"title":"Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires","authors":"Vladimir V. Poborchii , Alexander A. Shklyaev , Alexander V. Fokin","doi":"10.1016/j.jpcs.2024.112424","DOIUrl":"10.1016/j.jpcs.2024.112424","url":null,"abstract":"<div><div>The first work on quantum-sized CdSe nanowires (NWs) was made with NWs encapsulated in chrysotile asbestos nanotubes (asb-CdSe-NWs) in 1997. However, asb-CdSe-NWs remain under-investigated compared to widely-known solution-based CdSe NWs. Here, we study ∼5 nm diameter asb-CdSe-NWs aligned along their <strong>c</strong>-axis. Polarized optical absorption, Raman and photoluminescence spectra (OAS, RS and PLS) of asb-CdSe-NWs are examined. All spectra display a high anisotropy mainly associated with the anisotropic nearly cylindrical shape of NWs and dielectric contrast between NWs and asbestos, NW-light interaction being strong for the <strong><em>E</em></strong>//<strong>c</strong> and weak for <strong><em>E</em></strong>⊥<strong>c</strong> light polarizations. Asb-CdSe-NW <strong><em>E</em></strong>//<strong>c</strong> OAS shows ∼1.93 eV and ∼2.38 eV bands of excitonic transitions between size-quantized electronic states. RS display strong longitudinal-optical-phonon band with a weak surface-mode shoulder resonantly enhanced at the excitation wavelength corresponding to the ∼2.38 eV absorption band related to the 1Π<sub>1/2</sub>→1Π<sub>e</sub> transition. Acoustic radial breathing mode is observed at ∼14 cm<sup>−1</sup>. Low-excitation PLS show polarized exciton emission band at ∼1.883 eV while high-excitation PLS display ∼1.836 eV biexciton emission band. The ∼47 meV biexciton binding energy is enhanced due to the low-permittivity environment. Our asb-CdSe-NW results make an important complementary contribution to the studies of CdSe NWs fabricated by a variety of different techniques.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112424"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahir Iqbal , Abdul Basit , Abdallah M. Elgorban , Hind A. AL-Shwaiman , Muhammad Farooq , Muhammad Yousaf , Sumera Afsheen , Ayesha Mushtaq , Rana Mustansar Munir
{"title":"Cobalt doped MoS2: A photoactivated nanomaterial for removal of methylene blue and phenol","authors":"Tahir Iqbal , Abdul Basit , Abdallah M. Elgorban , Hind A. AL-Shwaiman , Muhammad Farooq , Muhammad Yousaf , Sumera Afsheen , Ayesha Mushtaq , Rana Mustansar Munir","doi":"10.1016/j.jpcs.2024.112422","DOIUrl":"10.1016/j.jpcs.2024.112422","url":null,"abstract":"<div><div>This research work reports the study about synthesis, characterizations and Photocatalytic applications of hydrothermally produced MoS<sub>2</sub> and Cobalt doped MoS<sub>2</sub> nanomaterials to overcome the environmental pollution caused by wastewater. MB dye and Phenol were used as model pollutants for evaluation of photocatalytic proficiency of MoS<sub>2</sub> and Cobalt doped MoS<sub>2</sub> nanostructures. The well matched ionic radius of Cobalt with host Mo atom increases their probability regarding alteration of nanomaterial’s optical, structural and catalytic properties. The Cobalt incorporation provided the synergistic effect attributed to efficient degradation up to 96 % and 80 % for MB dye and phenol respectively. Additionally, the prepared samples were characterized to elucidate their optical, electronic and structural properties. Scavenger analysis and reusability test had performed to check the role of active species and stability of optimized sample. This study predicts that the fabrication of Cobalt doped MoS<sub>2</sub> can be used as potential and promising photocatalyst for industrial applications for wastewater treatment.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112422"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Chaiboub , H. Bih , H. Zaitouni , A. Lahmar , K. Hoummada , M. Naji , B. Manoun , A. El Bouari , P. Lazor , M.P.F. Graça , L. Bih
{"title":"Enhancement of sodium ion conductivity in phosphate-based glass-ceramics by chemical substitution approach","authors":"I. Chaiboub , H. Bih , H. Zaitouni , A. Lahmar , K. Hoummada , M. Naji , B. Manoun , A. El Bouari , P. Lazor , M.P.F. Graça , L. Bih","doi":"10.1016/j.jpcs.2024.112415","DOIUrl":"10.1016/j.jpcs.2024.112415","url":null,"abstract":"<div><div>A NASICON-type sodium-ion conducting material was synthesized via the glass-ceramic route by investigating the zinc doped Na<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–P<sub>2</sub>O<sub>5</sub> system. The glasses and glass-ceramics corresponding to the formula Na<sub>2+x</sub>Al<sub>1-x</sub>Zn<sub>x</sub>Ti(PO<sub>4</sub>)<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8, 1), labeled as (NAZTP-G<sub>x</sub>) and (NAZTP-GC<sub>x</sub>) respectively, were characterized using different techniques. Differential Scanning Calorimetry (DSC) measurements were carried out to identify the characteristic temperatures, the glass transition (T<sub>g</sub>) and the crystallization temperature (T<sub>c</sub>). X-ray Diffraction (XRD) analysis of the glass-ceramics confirmed the formation of a solid solution Na<sub>2+x</sub>Al<sub>1-x</sub>Zn<sub>x</sub>Ti(PO<sub>4</sub>)<sub>3</sub> NASICON phase, Theoretical calculations employing the Perdew–Burke–Ernzerhoff generalized gradients approximation (PBE-GGA) model supported the potential substitution of aluminum by zinc in the octahedral site in the NASICON-phase. Further structural insights were obtained through Infrared (IR) and Raman spectroscopies. Scanning electron microscopy (SEM) analysis revealed a distinct flower-like shape of the formed crystallites in the glass-ceramic NAZTP-GC<sub>0.2</sub>. Electrical characterization using electrochemical impedance spectroscopy (EIS) demonstrated that the NAZTP-GC<sub>0.2</sub> sample exhibited the highest ionic conductivity at 300 °C, reaching 4.1 × 10<sup>−5</sup> (Ω<sup>−1</sup> cm<sup>−1</sup>) with an activation energy of 0.25 eV. The DC polarization was performed on the NAZTP-GC<sub>0.2</sub> glass-ceramic, revealing that the ions are the main charge carriers in the sample. This comprehensive analysis provides valuable insights into the partial zinc doping of NASICON glass-ceramics, offering potential for improved performance as solid electrolytes in various applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112415"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced photoresponse in graphene/Al doped ZnO nanorod junction","authors":"Praloy Mondal","doi":"10.1016/j.jpcs.2024.112421","DOIUrl":"10.1016/j.jpcs.2024.112421","url":null,"abstract":"<div><div>The current study examines the performance of graphene/Al doped ZnO (ZnO:Al) heterojunction photodetectors by variation in carrier concentration of ZnO layers. This is controlled by variation of O<sub>2</sub> percentage in growth of ZnO:Al layers produced by reactive sputtering within a small range of O<sub>2</sub> (5–8 %). Under light, the diodes fabricated with ZnO layers deposited at 5 % O<sub>2</sub> exhibit almost linear I–V characteristics, resulting in high photoresponsivity of around 0.08 A/W at 0 V and about 80 A/W at +3 V. Graphene/ZnO:Al junctions that are fabricated using lightly doped ZnO:Al layers deposited at ≥ 6 % O<sub>2</sub> exhibit comparatively poorer photoresponsivity (17 A/W at +3 V) when exposed to light. The responsivity of graphene/ZnO:Al increases from 17 to 95 A W<sup>−1</sup> as carrier concentration of ZnO layers rises from ∼10<sup>18</sup> cm<sup>−3</sup> to ∼5 × 10<sup>20</sup> cm<sup>−3</sup>. Carrier concentration induced Schottky barrier height change from 0.57 to 0.75 eV which enhances the responsivity of PDs from 17 to 95 A W<sup>−1</sup>. Reactive sputtering of ZnO:Al at moderate substrate temperatures allows for technological versatility and scalability, as well as simple control over its carrier concentration. Graphene/ZnO:Al Schottky type diodes appear promising for a variety of device applications beyond photodetector applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112421"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariappan Ganeshbabu , Leonid Vasylechko , Ramakrishnan Kalai Selvan
{"title":"Li-ion diffusional insights and temperature dependent electrical & dielectric properties of LiNi1/3Mn1/3Co1/3PO4 electrodes","authors":"Mariappan Ganeshbabu , Leonid Vasylechko , Ramakrishnan Kalai Selvan","doi":"10.1016/j.jpcs.2024.112420","DOIUrl":"10.1016/j.jpcs.2024.112420","url":null,"abstract":"<div><div>Enhancing the electrical conductivity of the cathode is crucial for improving the overall performance of modern lithium-ion (Li-ion) batteries. In this study, a facile sol-gel thermolysis technique was employed to synthesize LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>PO<sub>4</sub>, using ethylene-di-amine-tetra-acetic acid (EDTA) as the chelating agent. This method ensures a uniform distribution of metal ions, which is vital for achieving consistent and reliable material properties. This study employed solid-state impedance to investigate the electrical conductivity and Bond Valence Site Energy (BVSE) analysis to find the Li-ion trajectory within the proposed LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>PO<sub>4</sub> compound. Especially, the conductivity analysis revealed the small polaron hopping mechanism, a process in which charge carriers move through the crystal lattice by hopping from one localized site to another. The conductance spectra revealed that at 473 K, the compound exhibited a high DC conductivity of 6.88 x 10⁻⁶ S cm⁻<sup>1</sup>, which indicates that the material maintains a reasonable electrical conductivity at elevated temperatures for high-performance battery applications. The activation energy for conduction, determined from the Arrhenius plot, was found to be 0.14 eV, suggesting that the compound has a relatively low energy barrier for charge carrier movement. The half-cell of LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>PO<sub>4</sub> as cathode demonstrates an initial discharge capacity of 94 mAh g<sup>−1</sup> at 0.1 C in the potential window from 2 to 4.8 V vs. Li/Li<sup>+</sup>. The bond valence site energy (BVSE) modeling provided critical insights into the Li-ion migration within the cathode material. The analysis revealed a one-dimensional (1D) Li⁺ migration barrier of 0.919 eV and a hopping distance of 1.86 Å. These findings infer the potential of LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>PO<sub>4</sub> as a promising candidate for Li-ion energy storage applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112420"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tejas , Hari Mohan Rai , Sudha D. Kamath , Vikash Mishra
{"title":"Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials","authors":"Tejas , Hari Mohan Rai , Sudha D. Kamath , Vikash Mishra","doi":"10.1016/j.jpcs.2024.112418","DOIUrl":"10.1016/j.jpcs.2024.112418","url":null,"abstract":"<div><div>Metal oxide materials have widespread applications in multiple application fields. On doping Fe<sup>3+</sup> ions into α – SnWO<sub>4</sub>, structural, optical, and electronic properties varied noticeably leading the material into energy storage device applications. Pure and doped SnWO<sub>4</sub> materials were prepared using the solid-state reaction method. Two different phases were observed on doping Fe ions into the host observed through X-ray diffraction. Different functional groups and their vibrations were found using FTIR spectroscopy which deliberately led to the confirmation of the prepared sample's structure. Raman spectroscopy identified different intra and inter-molecular vibrations. Optical energy bandgap was found to be 3.26 eV and 2.78 eV for Pure SnWO<sub>4</sub> and SnWO<sub>4</sub>: Fe<sup>3+</sup> ions respectively. The results obtained from Diffuse reflectance spectra were validated using Density Functional Theory calculations. The theoretical band gap values were found to be close to the experimental value. The optical spectra were also obtained through DFT calculations which were reliable to experimental findings and exciton binding energies were discussed.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112418"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}