MOF-5/WSe2@g-C3N4的协同作用增强了结构和电子性能,在先进储能中具有优异的析氢反应性能和电化学稳定性

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Ashraf , Afaf Khadr Alqorashi , M.W. Iqbal , Summaira khan , Ehtisham Umar , Muhammad Arslan , Heba A. El-Sabban , M.A. Diab , Abhinav Kumar , Rashid javed
{"title":"MOF-5/WSe2@g-C3N4的协同作用增强了结构和电子性能,在先进储能中具有优异的析氢反应性能和电化学稳定性","authors":"Muhammad Ashraf ,&nbsp;Afaf Khadr Alqorashi ,&nbsp;M.W. Iqbal ,&nbsp;Summaira khan ,&nbsp;Ehtisham Umar ,&nbsp;Muhammad Arslan ,&nbsp;Heba A. El-Sabban ,&nbsp;M.A. Diab ,&nbsp;Abhinav Kumar ,&nbsp;Rashid javed","doi":"10.1016/j.jpcs.2025.112990","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal dichalcogenides (TMDCs), known for their physicochemical properties, have recently emerged as promising electrode materials for energy storage applications. Conversely, metal-organic frameworks (MOF-5) represent a leading prospect for enhancing future energy storage systems and HER due to high porosity, different functional groups, and potential as templates. MOF-5 is a metal-organic framework characterized by its high surface area, porosity, and structural tunability, ideal for accommodating electrolyte ions and enhancing charge storage capacity in energy storage devices. WSe<sub>2</sub>, a layered transition metal dichalcogenide, has electrical conductivity and catalytic properties, efficient charge transfer, and improved electrochemical reaction kinetics, especially in HER applications. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is a chemically stable 2D polymeric semiconductor known for its intrinsic redox activity and ability to promote ion and electron transport while enhancing the structural stability of composite materials. The present research successfully supercapattery electrode composed of MOF-5, crystalline tungsten diselenide (WSe<sub>2</sub>), and doped with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). At current density (J<sub>d</sub>) of 1 A/g, MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>//AC (supercapattery) electrodes indicated a specific capacity (Q<sub>s</sub>) of 320 C/g. The electrode's cyclic stability, achieving capacity retention of 78.6 % and coulombic efficiency of 92.4 % at 12,000 cycles, indicates the composite's long-term viability and significant potential as an electrode. The capacitive performance of this device was evaluated by MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> as the cathode and activated carbon (AC) as an anode, with 1 M KOH electrolytes. The supercapattery's superior electrochemical performance, achieving energy density (E<sub>d</sub>) of 70.1 Wh/kg and power density (P<sub>d</sub>) of 1600 W/kg. MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> demonstrated a Tafel slope and overpotential of 72.7 mV/dec and 86.43 mV. The MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> modified electrode, presenting electrochemical performance, is estimated to advance dependable and efficient energy storage systems. Current research explores the potential of MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> an electrode material for supercapattery performance.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 112990"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic of MOF-5/WSe2@g-C3N4 enhancing structural and electronic properties for superior hydrogen evolution reaction performance and electrochemical stability in advanced energy storage\",\"authors\":\"Muhammad Ashraf ,&nbsp;Afaf Khadr Alqorashi ,&nbsp;M.W. Iqbal ,&nbsp;Summaira khan ,&nbsp;Ehtisham Umar ,&nbsp;Muhammad Arslan ,&nbsp;Heba A. El-Sabban ,&nbsp;M.A. Diab ,&nbsp;Abhinav Kumar ,&nbsp;Rashid javed\",\"doi\":\"10.1016/j.jpcs.2025.112990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal dichalcogenides (TMDCs), known for their physicochemical properties, have recently emerged as promising electrode materials for energy storage applications. Conversely, metal-organic frameworks (MOF-5) represent a leading prospect for enhancing future energy storage systems and HER due to high porosity, different functional groups, and potential as templates. MOF-5 is a metal-organic framework characterized by its high surface area, porosity, and structural tunability, ideal for accommodating electrolyte ions and enhancing charge storage capacity in energy storage devices. WSe<sub>2</sub>, a layered transition metal dichalcogenide, has electrical conductivity and catalytic properties, efficient charge transfer, and improved electrochemical reaction kinetics, especially in HER applications. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is a chemically stable 2D polymeric semiconductor known for its intrinsic redox activity and ability to promote ion and electron transport while enhancing the structural stability of composite materials. The present research successfully supercapattery electrode composed of MOF-5, crystalline tungsten diselenide (WSe<sub>2</sub>), and doped with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). At current density (J<sub>d</sub>) of 1 A/g, MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>//AC (supercapattery) electrodes indicated a specific capacity (Q<sub>s</sub>) of 320 C/g. The electrode's cyclic stability, achieving capacity retention of 78.6 % and coulombic efficiency of 92.4 % at 12,000 cycles, indicates the composite's long-term viability and significant potential as an electrode. The capacitive performance of this device was evaluated by MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> as the cathode and activated carbon (AC) as an anode, with 1 M KOH electrolytes. The supercapattery's superior electrochemical performance, achieving energy density (E<sub>d</sub>) of 70.1 Wh/kg and power density (P<sub>d</sub>) of 1600 W/kg. MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> demonstrated a Tafel slope and overpotential of 72.7 mV/dec and 86.43 mV. The MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> modified electrode, presenting electrochemical performance, is estimated to advance dependable and efficient energy storage systems. Current research explores the potential of MOF-5/WSe<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> an electrode material for supercapattery performance.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 112990\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725004421\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725004421","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDCs)以其物理化学性质而闻名,最近成为储能应用中有前途的电极材料。相反,金属有机框架(MOF-5)由于其高孔隙率、不同的官能团和作为模板的潜力,代表了增强未来储能系统和HER的主要前景。MOF-5是一种具有高表面积、孔隙率和结构可调性的金属有机骨架,是储能装置中容纳电解质离子和增强电荷存储能力的理想材料。WSe2是一种层状过渡金属二硫化物,具有导电性和催化性能,高效的电荷转移,改善了电化学反应动力学,特别是在HER应用中。石墨氮化碳(g-C3N4)是一种化学稳定的二维聚合物半导体,以其固有的氧化还原活性和促进离子和电子传递的能力而闻名,同时增强了复合材料的结构稳定性。本研究成功制备了由MOF-5、结晶二硒化钨(WSe2)、掺杂石墨化氮化碳(g-C3N4)组成的超级电池电极。在电流密度(Jd)为1 A/g时,MOF-5/WSe2@g-C3N4//AC(超级电池)电极的比容量(Qs)为320 C/g。电极的循环稳定性表明,在12,000次循环中,该复合材料的容量保持率为78.6%,库仑效率为92.4%,表明该复合材料具有长期生存能力和作为电极的巨大潜力。以MOF-5/WSe2@g-C3N4为阴极,活性炭(AC)为阳极,电解液为1 M KOH,对该器件的电容性能进行了评价。超级电池具有优异的电化学性能,能量密度(Ed)达到70.1 Wh/kg,功率密度(Pd)达到1600 W/kg。MOF-5/WSe2@g-C3N4的Tafel斜率为72.7 mV/dec,过电位为86.43 mV。MOF-5/WSe2@g-C3N4修饰电极具有良好的电化学性能,有望推进可靠、高效的储能系统。目前的研究探索了MOF-5/WSe2@g-C3N4作为超级电池性能电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic of MOF-5/WSe2@g-C3N4 enhancing structural and electronic properties for superior hydrogen evolution reaction performance and electrochemical stability in advanced energy storage
Transition metal dichalcogenides (TMDCs), known for their physicochemical properties, have recently emerged as promising electrode materials for energy storage applications. Conversely, metal-organic frameworks (MOF-5) represent a leading prospect for enhancing future energy storage systems and HER due to high porosity, different functional groups, and potential as templates. MOF-5 is a metal-organic framework characterized by its high surface area, porosity, and structural tunability, ideal for accommodating electrolyte ions and enhancing charge storage capacity in energy storage devices. WSe2, a layered transition metal dichalcogenide, has electrical conductivity and catalytic properties, efficient charge transfer, and improved electrochemical reaction kinetics, especially in HER applications. Graphitic carbon nitride (g-C3N4) is a chemically stable 2D polymeric semiconductor known for its intrinsic redox activity and ability to promote ion and electron transport while enhancing the structural stability of composite materials. The present research successfully supercapattery electrode composed of MOF-5, crystalline tungsten diselenide (WSe2), and doped with graphitic carbon nitride (g-C3N4). At current density (Jd) of 1 A/g, MOF-5/WSe2@g-C3N4//AC (supercapattery) electrodes indicated a specific capacity (Qs) of 320 C/g. The electrode's cyclic stability, achieving capacity retention of 78.6 % and coulombic efficiency of 92.4 % at 12,000 cycles, indicates the composite's long-term viability and significant potential as an electrode. The capacitive performance of this device was evaluated by MOF-5/WSe2@g-C3N4 as the cathode and activated carbon (AC) as an anode, with 1 M KOH electrolytes. The supercapattery's superior electrochemical performance, achieving energy density (Ed) of 70.1 Wh/kg and power density (Pd) of 1600 W/kg. MOF-5/WSe2@g-C3N4 demonstrated a Tafel slope and overpotential of 72.7 mV/dec and 86.43 mV. The MOF-5/WSe2@g-C3N4 modified electrode, presenting electrochemical performance, is estimated to advance dependable and efficient energy storage systems. Current research explores the potential of MOF-5/WSe2@g-C3N4 an electrode material for supercapattery performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信