Journal of Physics and Chemistry of Solids最新文献

筛选
英文 中文
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires 直径为 5 纳米的对齐硒化镉纳米线的声子、光子和激子特性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-31 DOI: 10.1016/j.jpcs.2024.112424
{"title":"Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires","authors":"","doi":"10.1016/j.jpcs.2024.112424","DOIUrl":"10.1016/j.jpcs.2024.112424","url":null,"abstract":"<div><div>The first work on quantum-sized CdSe nanowires (NWs) was made with NWs encapsulated in chrysotile asbestos nanotubes (asb-CdSe-NWs) in 1997. However, asb-CdSe-NWs remain under-investigated compared to widely-known solution-based CdSe NWs. Here, we study ∼5 nm diameter asb-CdSe-NWs aligned along their <strong>c</strong>-axis. Polarized optical absorption, Raman and photoluminescence spectra (OAS, RS and PLS) of asb-CdSe-NWs are examined. All spectra display a high anisotropy mainly associated with the anisotropic nearly cylindrical shape of NWs and dielectric contrast between NWs and asbestos, NW-light interaction being strong for the <strong><em>E</em></strong>//<strong>c</strong> and weak for <strong><em>E</em></strong>⊥<strong>c</strong> light polarizations. Asb-CdSe-NW <strong><em>E</em></strong>//<strong>c</strong> OAS shows ∼1.93 eV and ∼2.38 eV bands of excitonic transitions between size-quantized electronic states. RS display strong longitudinal-optical-phonon band with a weak surface-mode shoulder resonantly enhanced at the excitation wavelength corresponding to the ∼2.38 eV absorption band related to the 1Π<sub>1/2</sub>→1Π<sub>e</sub> transition. Acoustic radial breathing mode is observed at ∼14 cm<sup>−1</sup>. Low-excitation PLS show polarized exciton emission band at ∼1.883 eV while high-excitation PLS display ∼1.836 eV biexciton emission band. The ∼47 meV biexciton binding energy is enhanced due to the low-permittivity environment. Our asb-CdSe-NW results make an important complementary contribution to the studies of CdSe NWs fabricated by a variety of different techniques.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials 掺杂亚铁离子对钨酸锡材料的结构、光学和电子特性的影响
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-29 DOI: 10.1016/j.jpcs.2024.112418
{"title":"Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials","authors":"","doi":"10.1016/j.jpcs.2024.112418","DOIUrl":"10.1016/j.jpcs.2024.112418","url":null,"abstract":"<div><div>Metal oxide materials have widespread applications in multiple application fields. On doping Fe<sup>3+</sup> ions into α – SnWO<sub>4</sub>, structural, optical, and electronic properties varied noticeably leading the material into energy storage device applications. Pure and doped SnWO<sub>4</sub> materials were prepared using the solid-state reaction method. Two different phases were observed on doping Fe ions into the host observed through X-ray diffraction. Different functional groups and their vibrations were found using FTIR spectroscopy which deliberately led to the confirmation of the prepared sample's structure. Raman spectroscopy identified different intra and inter-molecular vibrations. Optical energy bandgap was found to be 3.26 eV and 2.78 eV for Pure SnWO<sub>4</sub> and SnWO<sub>4</sub>: Fe<sup>3+</sup> ions respectively. The results obtained from Diffuse reflectance spectra were validated using Density Functional Theory calculations. The theoretical band gap values were found to be close to the experimental value. The optical spectra were also obtained through DFT calculations which were reliable to experimental findings and exciton binding energies were discussed.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries N 掺杂碳纳米管组成的碳颗粒的简便合成及其在锂离子电池中的应用
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-28 DOI: 10.1016/j.jpcs.2024.112413
{"title":"Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries","authors":"","doi":"10.1016/j.jpcs.2024.112413","DOIUrl":"10.1016/j.jpcs.2024.112413","url":null,"abstract":"<div><div>The synthesis of N-doped carbon materials plays an important role in improving electrochemical performance for lithium-ion batteries. The synthesis of N-doped carbon materials with special morphology and structure remains a challenge, because it is difficult to achieve both goals simultaneously. Carbon particles composed of N-doped carbon nanotubes have been successfully prepared via a simple method using Ni<sup>2+</sup> salt, melamine-formaldehyde resin microspheres and ethanolamine as the raw materials. The as-synthesized carbon particles possess a stable reversible capacity of 445.5 mAh g<sup>−1</sup> at 1 C after 100 cycles. Even at 10 C and 20 C, the reversible capacities could also reach 200.1 and 109.8 mAh g<sup>−1</sup>. The excellent electrochemical performance of the carbon particles can be attributed to both unique structure and N-doping. The high surface area and long carbon nanotube can provide more active area and facilitate the electron transport. Moreover, N-doping can increase the electrical conductivity and create the defects for carbon materials, which are favorable for Li<sup>+</sup> adsorption.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics 介孔 ZnyCd1-yS 量子点的声化学合成:随组成变化的光学、电学、介电和氢气生成特性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-28 DOI: 10.1016/j.jpcs.2024.112414
{"title":"Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics","authors":"","doi":"10.1016/j.jpcs.2024.112414","DOIUrl":"10.1016/j.jpcs.2024.112414","url":null,"abstract":"<div><div>Mesoporous Zn<sub>y</sub>Cd<sub>1-y</sub>S quantum dots (QDs) with mixed cubic–hexagonal phases prepared by sonochemical technique at varying Zn content. Incorporating Zn ions in the CdS lattice reduced the crystalline size and enhanced the corresponding surface areas at increasing Zn contents. The increase of Zn content in Zn<sub>y</sub>Cd<sub>1-y</sub>S QDs increased the bandgap from 2.52 eV to 3.83 eV and enhanced the corresponding Urbach energy from 72 meV to 279 meV. Zn<sub>y</sub>Cd<sub>1-y</sub>S QDs exhibited small electrical activation energies ranging from 249 mV to 361 mV. The effect of Zn content on the catalytic activity of Zn<sub>y</sub>Cd<sub>1-y</sub>S QDs toward hydrogen production through NaBH<sub>4</sub> hydrolysis was investigated at different temperatures. Ternary alloys ZnCdS QDs exhibited higher catalytic activity than pure ZnS and CdS QDs, with Zn<sub>0·5</sub>Cd<sub>0·5</sub>S QDs displaying the highest hydrogen generation rate of 96 mL∙min<sup>−1</sup> g<sup>−1</sup>. The increase of reaction temperature from 30 °C to 60 °C enhanced the rate constant of hydrogen production from 0.071 to 0.36 min<sup>−1</sup>. Based on the pseudo-first-order equation, the estimated apparent activation energy of Zn<sub>0·5</sub>Cd<sub>0·5</sub>S QDs was 45.3 kJ mol<sup>−1</sup>. Overall, the obtained results underscored the potential of Zn<sub>y</sub>Cd<sub>1-y</sub>S QDs as promising catalysts for hydrogen generation.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Mo dopant on the structural, vibrational, dielectric, and magnetic properties of combustion synthesized ZnFe2O4 nanostructures for optoelectronic and spintronic applications 掺杂钼对用于光电和自旋电子应用的燃烧合成 ZnFe2O4 纳米结构的结构、振动、介电和磁性能的影响
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-28 DOI: 10.1016/j.jpcs.2024.112417
{"title":"Influence of Mo dopant on the structural, vibrational, dielectric, and magnetic properties of combustion synthesized ZnFe2O4 nanostructures for optoelectronic and spintronic applications","authors":"","doi":"10.1016/j.jpcs.2024.112417","DOIUrl":"10.1016/j.jpcs.2024.112417","url":null,"abstract":"<div><div>This report investigates the dielectric and magnetic behavior of Molybdenum (Mo)-incorporated ZnFe<sub>2</sub>O<sub>4</sub> prepared via combustion route with different dopant concentrations (0.0, 0.1, 0.25, 0.5, 0.75, and 1.0 wt%). XRD patterns reveal the cubic spinel structures with a slight increase in lattice constant while replacing Mo at Fe sites. Mo doped induced lattice constant increase from 8.444 to 8.469 Å coupled with a significant increase in density. Raman spectroscopy reveals a decrement in the peak broadening of the A<sub>1g</sub> mode at higher Mo concentrations, indicating longer phonon lifetimes. Scanning electron microscopy (SEM) and EDX analysis confirm the agglomerated pseudo-spherical structures with uniform elemental distribution over the surface. Further, the dielectric constant values exhibit a slightly decreasing trend with increasing frequency, and the mechanisms were discussed based on the intrinsic polarization due to the charge imbalance between Fe<sup>3+</sup> and Fe<sup>2+</sup> states. Further, the magnetic measurements confirm the soft magnetic behavior with saturation magnetization ranging from 13.72 to 14.61 emu/g and coercivity between 07 (Oe) to 44 (Oe). The overall findings demonstrate that Mo doping in ZnFe₂O₄ significantly modifies the dielectric and magnetic properties, making it a promising material for various technological applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery 用于锌离子水电池的高性能镍锰氧化物@MXene 纳米复合材料
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-28 DOI: 10.1016/j.jpcs.2024.112411
{"title":"High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery","authors":"","doi":"10.1016/j.jpcs.2024.112411","DOIUrl":"10.1016/j.jpcs.2024.112411","url":null,"abstract":"<div><div>With the continuous consumption of lithium resources and the safety risks brought by organic electrolytes in lithium-ion batteries, aqueous zinc-ion batteries are expected to be the next generation of key energy storage devices to replace lithium-ion batteries. Among many zinc-ion battery cathode materials, manganese-based materials and MXene materials occupy the main positions respectively. Among them, Nickel manganate (NiMn<sub>2</sub>O<sub>4</sub>) nanosheets and MXene as active materials have received extensive attention. In addition, MXene has excellent electrical conductivity and is conducive to ion transport, and NiMn<sub>2</sub>O<sub>4</sub> nanosheets provide more active sites for electrochemical reactions. At a current density of 0.2 A g<sup>−1</sup>, the NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposite obtained a high specific capacitance of 319.9 mAh g<sup>−1</sup>. In addition, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites showed A high specific capacity of 129.8 mAh g<sup>−1</sup> after 800 cycles at a current density of 0.5 A g<sup>−1</sup>. Therefore, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric and electrical transport properties of mixed-conducting multicomponent oxides based on Ba(Zr,Ce)O3-δ 基于 Ba(Zr,Ce)O3-δ的多组分混合导电氧化物的热电和电传输特性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-28 DOI: 10.1016/j.jpcs.2024.112416
{"title":"Thermoelectric and electrical transport properties of mixed-conducting multicomponent oxides based on Ba(Zr,Ce)O3-δ","authors":"","doi":"10.1016/j.jpcs.2024.112416","DOIUrl":"10.1016/j.jpcs.2024.112416","url":null,"abstract":"<div><div>In this work, the chosen physicochemical properties of single-phase multicomponent oxides BaTi<sub>1/8</sub>Fe<sub>1/8</sub>Co<sub>1/8</sub>Y<sub>1/8</sub>Zr<sub>1/8</sub>Sn<sub>1/8</sub>Ce<sub>1/8</sub>Hf<sub>1/8</sub>O<sub>3-δ</sub> and BaTi<sub>1/9</sub>Fe<sub>1/9</sub>Co<sub>1/9</sub>Y<sub>1/9</sub>Zr<sub>1/9</sub>Sn<sub>1/9</sub>Ce<sub>1/9</sub></div><div>Hf<sub>1/9</sub>Bi<sub>1/9</sub>O<sub>3-δ</sub> were studied. The microstructure of the compounds strongly depended on the presence of bismuth in the structure. The electrical transport studies showed a level of electrical conductivity of ∼10<sup>−3</sup> - 10<sup>−2</sup> S/cm in the temperature range 673–1073 K. Electrical conductivity was thermally activated and the dominant conduction mechanism was the hopping of small polarons. Moreover, total electrical conductivity changes in the dry and humidified atmosphere at lower temperatures due to the presence of protonic defects in the structure. Thermoelectric measurements showed a relatively high value of the Seebeck coefficient for studied ceramics. Its values ranged between 50 and 250 μV/K depending on the sample and temperature. The Seebeck coefficient sign was positive, meaning that electron holes <del>and/or oxygen vacancies</del> were predominant charge carriers in oxidizing atmospheres. Additionally, the Seebeck coefficient was found to be different in the humidified atmosphere which indicates an influence of protonic defects on thermoelectric transport. The obtained power factor <em>P</em><sub><em>f</em></sub> turned out to be low and dependent on the presence of protonic defects in the structure. This indicates, that the efficiency of the MOs-based operating thermoelectric generators can be controlled by changing the partial pressure of water vapor.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of spin-spiral magnetic structures in Mn2PtSn Mn2PtSn 中自旋螺旋磁结构的稳定性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-26 DOI: 10.1016/j.jpcs.2024.112397
{"title":"Stability of spin-spiral magnetic structures in Mn2PtSn","authors":"","doi":"10.1016/j.jpcs.2024.112397","DOIUrl":"10.1016/j.jpcs.2024.112397","url":null,"abstract":"<div><div>The stability of a long-periodic homogeneous spin-spiral configuration in an inverse tetragonal Heusler compound, Mn<sub>2</sub>PtSn, is studied with the help of density functional theory calculations. The energetically most stable collinear magnetic state in this system is the ferrimagnetic one. However, the existence of negative phonon frequency makes this configuration dynamically unstable. The energy dispersion plots reveal that an energy minimum exists at <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> along [100] and [110] propagating directions, which correspond to a stable non-collinear configuration compared to the collinear spin states. The inclusion of spin–orbit coupling further reduces the ground-state energy without changing the q-vector of the energy minima. The cycloidal spiral configuration, where the spins rotate at an angle of <span><math><mrow><mn>36</mn><mo>°</mo></mrow></math></span> along the propagating direction, is found to be more stable than the screw spiral configuration. The calculated density of state plots further supports the stability of the non-collinear cycloidal spin order. This stable, non-collinear spin-spiral configuration of Mn<sub>2</sub>PtSn makes this compound a prospective material for spintronics device applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the electronic properties of doped zirconia for enhanced optoelectronic applications: A quantum chemical approach 探索掺杂氧化锆的电子特性以增强光电应用:量子化学方法
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-26 DOI: 10.1016/j.jpcs.2024.112412
{"title":"Exploring the electronic properties of doped zirconia for enhanced optoelectronic applications: A quantum chemical approach","authors":"","doi":"10.1016/j.jpcs.2024.112412","DOIUrl":"10.1016/j.jpcs.2024.112412","url":null,"abstract":"<div><div>Zirconia (ZrO<sub>2</sub>) is a versatile material with applications in various fields due to its exceptional mechanical strength, thermal stability, and chemical resistance. In recent years, interest has surged in utilizing doped ZrO<sub>2</sub> as photocatalysts. This study investigates the electronic properties of ZrO<sub>2</sub> upon doping with non-metal elements sulfur (S), selenium (Se), and tellurium (Te) using first-principle calculations. The effects of different doping concentrations on the band structure and density of states (DOS) have been examined. Calculations using GGA show significant reductions in the band gap upon doping, indicating potential for improved optoelectronic performance. Specifically, using accurate DFT + U approach we found that doping ZrO<sub>2</sub> with 25 % S led to a band gap reduction from 5.4 eV to 1.2 eV, demonstrating promising result for photovoltaic applications. This study provides valuable insights into the electronic properties of doped ZrO<sub>2</sub> (ZrO<sub>2-x</sub>Q<sub>x</sub>, Q = S, Se and Te, x = 0.25, 0.5 and 2) paving the way for tailored applications in various technological domains.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial structure design of interlayer for advanced lithium–sulfur batteries 先进锂硫电池夹层的空间结构设计
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-10-25 DOI: 10.1016/j.jpcs.2024.112405
{"title":"Spatial structure design of interlayer for advanced lithium–sulfur batteries","authors":"","doi":"10.1016/j.jpcs.2024.112405","DOIUrl":"10.1016/j.jpcs.2024.112405","url":null,"abstract":"<div><div>The practical application of lithium-sulfur (Li–S) batteries has been hindered by the lithium polysulfide shuttle effect. An effective way to solve this problem is to utilize interlayer engineering to confine polysulfides and promote their catalytic conversion. From a spatial perspective, we designed a carbon nanofiber conductive layer (CNF, without Sn content, labeled as 0) and two Sn-doped carbon nanofiber catalytic layers (SCNF, with 10 wt% and 20 wt% Sn content, labeled as 1 and 2, respectively) with different contents of catalyst content, and verified an efficient interlayer structure by adjusting the order of preferential contact between the conductive layer and the catalytic layer with the sulfur cathode to form a hierarchical system for the inhibition and conversion of lithium polysulfide. Electrochemical measurements show that different spatial configurations have significant discrepancies on the electrochemical performance of Li–S batteries. Thus, the space configuration of 210 enables the Li–S battery to provide a specific capacity of up to 1088 mAh g<sup>−1</sup> after 100 cycles at 0.2C. Even under the harsh conditions of high sulfur loading (5.6 mg cm<sup>−2</sup>) and lean electrolyte (E/S = 10 μL mg<sup>−1</sup>), the Li–S battery was able to cycle stably for 94 cycles at 0.2C with 87 % capacity retention. This study provides a novel spatial strategy for advancing the spatial design of high-performance Li–S batteries.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信