Journal of Physics and Chemistry of Solids最新文献

筛选
英文 中文
X-ray induced synthesis of beta tin (β-Sn) X 射线诱导合成β锡(β-Sn)
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-21 DOI: 10.1016/j.jpcs.2024.112351
{"title":"X-ray induced synthesis of beta tin (β-Sn)","authors":"","doi":"10.1016/j.jpcs.2024.112351","DOIUrl":"10.1016/j.jpcs.2024.112351","url":null,"abstract":"<div><div>The destabilization of molecular structures via hard X-rays has been previously utilized to synthesize novel compounds. Here we report that the monochromatic X-ray induced decomposition of tin(II) oxalate (SnC<sub>2</sub>O<sub>4</sub>) at ambient and 0.6 GPa pressures lead to the formation of beta tin (β-Sn). At 1 GPa, only the degradation of SnC<sub>2</sub>O<sub>4</sub> crystal structure is observed without any indication of β-Sn at the end of irradiation. The maximum transformation yield is achieved at 0.6 GPa suggesting the critical role of intermolecular distance in X-ray induced synthesis of β-Sn. Moreover, a modified Avrami equation is utilized to describe the kinetics and geometry of structural synthesis at ambient and 0.6 GPa. The obtained results demonstrate that X-ray irradiation can induce photochemical synthetic pathways different from conventional methods (e.g., high pressure, temperature, stoichiometric mixing) and that high pressure (HP) can be considered a tool to control X-ray induced photochemistry.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving cycling performance and high rate capability of LiNi0.5Mn0.3Co0.2O2 cathode materials by sol-gel combustion synthesis 通过溶胶-凝胶燃烧合成提高 LiNi0.5Mn0.3Co0.2O2 正极材料的循环性能和高速率能力
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-21 DOI: 10.1016/j.jpcs.2024.112352
{"title":"Improving cycling performance and high rate capability of LiNi0.5Mn0.3Co0.2O2 cathode materials by sol-gel combustion synthesis","authors":"","doi":"10.1016/j.jpcs.2024.112352","DOIUrl":"10.1016/j.jpcs.2024.112352","url":null,"abstract":"<div><div>The layered LiNi<sub>0.5</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> (NMC532) material displays capacity loss and poor rate performance even though it is a widely used cathode in commercial Li-ion batteries (LIBs). In this work, the structural and electrochemical performance of the NMC532 cathode were optimized using the fuel-to-oxidizer ratio assisted sol-gel combustion synthesis (SCS). It was shown that the fuel-to-oxidizer ratio markedly influenced the exothermicity of the combustion reaction which affected the crystal structure, morphology, and electrochemical performance of the final NCM532 materials. The fuel lean (FL) composition produced NMC532 cathode materials with the biggest crystallite and particle sizes, less cation mixing degree and better layered structure compared with the fuel stoichiometric (FS) and fuel rich (FR) compositions. The FL cell presented an initial discharge capacity of 180 mAh g<sup>−1</sup> and the highest capacity retention of 92.2 % when it was cycled at 0.1 C between 2.5 and 4.4 V. Also, the FL cell displayed exceptional rate capability with the average capacities reaching 180, 178, 175, and 173 mAh/g at current densities of 1 C, 3 C, 5 C, and 10 C, respectively between 3.0 and 4.6 V. The EIS tests and dQ/dV plots showed that the FL cell both had the least impedance and polarization. The superior electrochemical performance of the FL material was ascribed to its optimized structural properties. Furthermore, the electrochemical results also show the influence of voltage window and current density on the performance of the NMC532 cathode materials.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum nuclear motion in silicene: Assessing structural and vibrational properties through path-integral simulations 硅烯中的量子核运动:通过路径积分模拟评估结构和振动特性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI: 10.1016/j.jpcs.2024.112343
{"title":"Quantum nuclear motion in silicene: Assessing structural and vibrational properties through path-integral simulations","authors":"","doi":"10.1016/j.jpcs.2024.112343","DOIUrl":"10.1016/j.jpcs.2024.112343","url":null,"abstract":"<div><p>This paper explores the interplay between quantum nuclear motion and anharmonicity, which causes nontrivial effects on the structural and dynamical characteristics of silicene, a two-dimensional (2D) allotrope of silicon with interesting electronic and mechanical properties. Employing path-integral molecular dynamics (PIMD) simulations, we investigate the quantum delocalization of nuclei, unraveling its impact on the behavior of silicene at the atomic scale. Our study reveals that this delocalization induces significant deviations in the structural parameters of silicene, influencing in-plane surface area, bond lengths, angles, compressibility, and overall lattice dynamics. Through extensive simulations, we delve into the temperature-dependent behavior between 25 and 1200 K, unveiling the role of quantum nuclear fluctuations in dictating thermal expansion and phonon spectra. The extent of nuclear quantum effects is assessed by comparing results of PIMD simulations using an efficient tight-binding Hamiltonian, with those obtained from classical molecular dynamics simulations. The observed quantum effects showcase non-negligible deviations from classical predictions, emphasizing the need for accurate quantum treatments in understanding the material’s behavior at finite temperatures. At low <span><math><mi>T</mi></math></span>, the 2D compression modulus of silicene decreases by a 14% due to quantum nuclear motion. We compare the magnitude of quantum effects in this material with those in other related 2D crystalline solids, such as graphene and SiC monolayers.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022369724004785/pdfft?md5=27849ba3b60998a1ea91df8356aa8e23&pid=1-s2.0-S0022369724004785-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunability in electronic and optical properties of GaS/PbS vdW heterostructure GaS/PbS vdW 异质结构的电子和光学特性的可调谐性
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI: 10.1016/j.jpcs.2024.112348
{"title":"Tunability in electronic and optical properties of GaS/PbS vdW heterostructure","authors":"","doi":"10.1016/j.jpcs.2024.112348","DOIUrl":"10.1016/j.jpcs.2024.112348","url":null,"abstract":"<div><div>A promising novel class of heterostructures has recently emerged, combining a semiconducting GaS monolayer with other 2D materials for energy-related applications. In this study, we considered the layered PbS to form the van der Waals heterostructure with GaS and investigated its properties using density functional theory. The GaS/PbS heterostructure exhibits a type-II heterostructure with an indirect bandgap of 1.65 eV, displaying enhanced light absorption across the visible spectrum. Moreover, the heterostructure's energy band gap shows tunability with an applied transverse electric field attributed to the spontaneous electric polarization within the lattice. Subsequently, it contributes to increased optical absorbance and light harvesting efficiency under ±0.2 V/Å electric field. The applied electric field also offers tunable band alignments (transition type-II and type-I), making it a potential candidate for solar cells that can optimize their efficiency based on varying light conditions.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic conversion of acetone and n-butanol over metal incorporated hydrotalcite-derived oxides catalysts 在掺入金属的氢铝酸盐衍生氧化物催化剂上催化丙酮和正丁醇的转化
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI: 10.1016/j.jpcs.2024.112349
{"title":"Catalytic conversion of acetone and n-butanol over metal incorporated hydrotalcite-derived oxides catalysts","authors":"","doi":"10.1016/j.jpcs.2024.112349","DOIUrl":"10.1016/j.jpcs.2024.112349","url":null,"abstract":"<div><p>The catalytic activity/selectivity of copper, silver, and silver-copper incorporated thermally treated hydrotalcite catalysts prepared at different temperatures were investigated in the continuous gas phase aldol condensation reaction between acetone and <em>n</em>-butanol. The synthesized catalysts were characterized by gas adsorption analysis, X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (DR-UV), temperature-programmed reduction with hydrogen (H<sub>2</sub>-TPR), temperature-programmed desorption of carbon dioxide (CO<sub>2</sub>-TPD) and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). A mixture of several condensation products was produced by the cross- and self-aldol condensation reactions. Incorporation of copper, silver and silver-copper into thermally treated hydrotalcite can enhance the catalytic activity and selectivity of compounds with carbon number 11 (C11), especially over silver-copper incorporated thermally treated hydrotalcite catalysts at 800 °C (AgCu/HT800).</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced optoelectronic and thermoelectric properties of half Heusler compounds KXSb (X = Be, Mg, Ca and Sr): A first principle study 半 Heusler 化合物 KXSb(X = Be、Mg、Ca 和 Sr)的增强型光电和热电特性:第一原理研究
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI: 10.1016/j.jpcs.2024.112345
{"title":"Enhanced optoelectronic and thermoelectric properties of half Heusler compounds KXSb (X = Be, Mg, Ca and Sr): A first principle study","authors":"","doi":"10.1016/j.jpcs.2024.112345","DOIUrl":"10.1016/j.jpcs.2024.112345","url":null,"abstract":"<div><div>In the present paper, structural, electronic, elastic, thermodynamic, optical, and thermoelectric properties of h-H alloys KXSb (X = Be, Mg, Ca, and Sr) are investigated for the first time. These properties were explored using quantum mechanical model – the density functional theory (DFT) with both GGA-PBE and TB-mBJ exchange-correlation functional. The Boltzmann transport equations and the Full Potential Linearized Augmented Plane wave (FP-LAPW) approach, as built into the WIEN2k code, are used to investigate these properties. The band structures and density of states (DOS) are also studied. The half-Heusler compounds show semiconductor properties with both the GGA and mBJ methods, while the KBeSb alloy exhibits metallic nature under the GGA-PBE approach. The elastic and thermo dynamical properties were also investigated, and the results revealed that the compounds are mechanically and thermally stable. The observed high Debye temperature (<span><math><mrow><msub><mi>ϴ</mi><mi>D</mi></msub></mrow></math></span> <strong>)</strong> implies that the alloy is harder and possesses a significant Debye sound velocity. The current paper highlights the optical and thermoelectric applications of the alloys. At 900 K, KCaSb exhibits maximum power factors of 8.83 × 10<sup>11</sup> (W/mK<sup>2</sup>s) with the GGA-PBE method and 8.19 × 10<sup>11</sup> (W/mK<sup>2</sup>s) with the TB-mBJ approach.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic interface layer enables epitaxial Li deposition for anode-free Li metal batteries 动态界面层实现了无阳极锂金属电池的外延锂沉积
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI: 10.1016/j.jpcs.2024.112350
{"title":"Dynamic interface layer enables epitaxial Li deposition for anode-free Li metal batteries","authors":"","doi":"10.1016/j.jpcs.2024.112350","DOIUrl":"10.1016/j.jpcs.2024.112350","url":null,"abstract":"<div><div>Anode-free Li-metal batteries are the best high-energy-density Li-ion batteries. However, the lack of active Li on anode side exacerbates dendritic Li growth, dead Li formation and parasitic reactions. In this study, we develop a lithiophilic Mg modification layer on Cu foil surface using magnetron sputtering. The epitaxial and dense Li deposition are manipulated, attributing to excellent Li affinity, favorable charge transfer and self-diffusion kinetics of the functional layer. Consequently, the coulombic efficiency of Li deposition/stripping on the Mg-coated Cu substrate remains at 83.7 % even after 50 cycles under 0.5 mA cm<sup>−2</sup>. Importantly, this approach enable the pouch cells paired with LiFePO<sub>4</sub> cathodes to achieve a lifespan of over 70 cycles under 0.5 mA cm<sup>−2</sup> without experiencing a significant capacity drop. This straightforward strategy is promising for developing long-lasting anode-free Li batteries.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical conduction of ferroelectric domains and domain walls in polycrystalline BiFeO3 and Bi5Ti3FeO15 thin films 多晶 BiFeO3 和 Bi5Ti3FeO15 薄膜中铁电畴和畴壁的电导率
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-17 DOI: 10.1016/j.jpcs.2024.112347
{"title":"Electrical conduction of ferroelectric domains and domain walls in polycrystalline BiFeO3 and Bi5Ti3FeO15 thin films","authors":"","doi":"10.1016/j.jpcs.2024.112347","DOIUrl":"10.1016/j.jpcs.2024.112347","url":null,"abstract":"<div><p>The unique properties of domain wall conductivity have garnered significant interest for their potential application in non-volatile ferroelectric domain wall memory. In this study, we investigated the electrical conduction within ferroelectric domains and domain walls of polycrystalline BiFeO<sub>3</sub> (BFO) and Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTFO) thin films, which were deposited on Pt/Ta/glass substrates via pulsed laser deposition. BFO thin film consistently demonstrated a (111) orientation, while BTFO thin film exhibited mixed crystallinity, featuring both <em>c</em>-axis and <em>a</em>-axis orientations. This mixed crystallinity in BTFO thin film contributed to a higher remanent polarization of 38.2 μC/cm<sup>2</sup> compared to 20.3 μC/cm<sup>2</sup> in BFO thin film, which is attributed to the <em>a</em>-oriented crystallinity within the Bi-layered perovskite structure of BTFO thin film. Additionally, BTFO thin film displayed a greater prevalence of 90° domain walls, which enhanced electrical conduction due to charge accumulation, particularly when compared to 180° domain walls. A significant change in resistance was observed when the domain wall was present versus absent, with a more pronounced effect in the BTFO capacitor compared to the BFO capacitor. This is attributed to the higher domain wall conductivity in BTFO thin film, confirming their superiority for use in ferroelectric capacitor devices that leverage domain wall conductivity.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The invisible hand of pre-adsorbates: Unveiling oxygen's role in sculpting Cu–TiN interfaces 预吸附剂的无形之手:揭示氧气在雕刻铜-氮化钛界面中的作用
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-17 DOI: 10.1016/j.jpcs.2024.112346
{"title":"The invisible hand of pre-adsorbates: Unveiling oxygen's role in sculpting Cu–TiN interfaces","authors":"","doi":"10.1016/j.jpcs.2024.112346","DOIUrl":"10.1016/j.jpcs.2024.112346","url":null,"abstract":"<div><p>Copper (Cu) binding to titanium nitride (TiN) surfaces is important for applications in catalysis, sensing, and electronics. However, achieving controlled and stable Cu attachment remains challenging. In this study, Density Functional Theory with Hubbard U corrections (DFT + U) is employed to investigate how pre-adsorbed oxygen (O) and sulfur (S) influence Cu attachment and the resulting interfacial properties. Contrary to initial expectations, our calculations reveal that the presence of pre-adsorbed O and S significantly weakens the Cu–TiN interface. Direct adsorption of Cu on the TiN surface, without pre-adsorbed species, results in a much higher adsorption energy (−13.94 eV), demonstrating stronger interfacial stability compared to systems with O (−2.06 eV) or S (−1.84 eV) pre-adsorption. Although pre-adsorbed O and S can modify the interface's electronic structure, the introduction of these species ultimately weakens the Cu–TiN interaction rather than enhancing it, as initially hypothesized. Analysis of the density of states (DOS) and charge transfer shows that direct Cu–TiN bonding maintains a more robust interaction, making it more suitable for applications requiring strong metal-ceramic interfaces. These findings highlight the critical role of surface chemistry in controlling the strength of Cu–TiN interfaces. The use of DFT + U calculations provides valuable insights into the bonding mechanisms and electronic changes at these interfaces, informing future design strategies for Cu–TiN systems with tailored properties for advanced technological applications.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic degradation of Rhodamine B dye over oxygen-rich bismuth oxychloride Bi24O31Cl10 photocatalyst under UV and Visible light irradiation: Pathways and mechanism 紫外线和可见光照射下富氧氯化铋 Bi24O31Cl10 光催化剂对罗丹明 B 染料的光催化降解:途径和机制
IF 4.3 3区 材料科学
Journal of Physics and Chemistry of Solids Pub Date : 2024-09-17 DOI: 10.1016/j.jpcs.2024.112342
{"title":"Photocatalytic degradation of Rhodamine B dye over oxygen-rich bismuth oxychloride Bi24O31Cl10 photocatalyst under UV and Visible light irradiation: Pathways and mechanism","authors":"","doi":"10.1016/j.jpcs.2024.112342","DOIUrl":"10.1016/j.jpcs.2024.112342","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Photocatalytic removal of organic pollutants from wastewater has recently garnered significant attention due to its environmental and ecological significance. In this study, a bismuth-rich bismuth oxychloride (Bi&lt;sub&gt;24&lt;/sub&gt;O&lt;sub&gt;31&lt;/sub&gt;Cl&lt;sub&gt;10&lt;/sub&gt;) was synthesized using a single-step solid-state reaction and applied as a photocatalyst for the degradation of rhodamine B in aqueous solution. The photocatalyst was prepared through an eco-friendly solid-state method by mixing bismuth oxide (Bi&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;) and bismuth oxychloride (BiOCl), followed by direct annealing at 600 °C. The synthesized material was characterized through various techniques, including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, energy dispersive X-ray spectroscopy (EDS), diffuse reflectance, UV–Visible, and photoluminescence (PL) spectroscopies. The electronic structure of the Bi&lt;sub&gt;24&lt;/sub&gt;O&lt;sub&gt;31&lt;/sub&gt;Cl&lt;sub&gt;10&lt;/sub&gt; bulk material was analyzed using Density Functional Theory (DFT).&lt;/div&gt;&lt;div&gt;Rietveld refinement confirmed the formation of a pure monoclinic Bi&lt;sub&gt;24&lt;/sub&gt;O&lt;sub&gt;31&lt;/sub&gt;Cl&lt;sub&gt;10&lt;/sub&gt; phase with the space group P2/c, and the XRD patterns indicated well-crystallized material. SEM revealed micron-sized crystallites, while BET surface area analysis showed a value of 22.546 m²/g, suggesting that a larger surface area could enhance photocatalytic performance. The band gap of the material was determined to be 2.88 eV, with an absorption edge at 430 nm, indicating a promising response to visible light.&lt;/div&gt;&lt;div&gt;The photocatalytic activity of Bi&lt;sub&gt;24&lt;/sub&gt;O&lt;sub&gt;31&lt;/sub&gt;Cl&lt;sub&gt;10&lt;/sub&gt; was demonstrated by the degradation of rhodamine B (RhB), with complete degradation achieved in 90 min under UV light. Under visible light, 98 % degradation efficiency was reached after 180 min. Kinetic studies showed that the degradation followed a pseudo-first-order model. Optimal conditions for maximum degradation were found at a solution pH of 5, a catalyst concentration of 1 g/L, and a dye concentration of 5 mg/L. Remarkably, the photocatalyst exhibited excellent reusability, maintaining high efficiency over five cycles, with only a slight decrease from 100 % to 90 %.&lt;/div&gt;&lt;div&gt;Trapping experiments identified that reactive species such as superoxide radicals (∙O&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;−&lt;/sup&gt;) and hydroxyl radicals (∙OH) played key roles in the photocatalytic process. The possible reaction mechanism was proposed, and degradation products were monitored using liquid chromatography-mass spectrometry (LC-MS), allowing for the elucidation of the degradation pathways of RhB. Additionally, the photocatalyst's effectiveness was tested on Methyl Orange (MO) and Methylene Blue (MB), achieving nearly 100 % degradation for MO and 41 % for MB under UV light. This research highlights the significant potential of Bi&lt;sub&gt;24&lt;/sub&gt;O&lt;sub&gt;31&lt;/sub&gt;Cl&lt;sub","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信