Journal of Physics D: Applied Physics最新文献

筛选
英文 中文
Recent advances in the mechanism, properties, and applications of hafnia ferroelectric tunnel junctions 哈夫纳铁电隧道结的机理、特性和应用的最新进展
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad7036
Eunjin Lim, Dahye Kim, Jongmin Park, Minsuk Koo, Sungjun Kim
{"title":"Recent advances in the mechanism, properties, and applications of hafnia ferroelectric tunnel junctions","authors":"Eunjin Lim, Dahye Kim, Jongmin Park, Minsuk Koo, Sungjun Kim","doi":"10.1088/1361-6463/ad7036","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7036","url":null,"abstract":"The increasing demand of information and communication technology has pushed conventional computing paradigm to its limit. In addition, physical and technological factors have constrained the advancement of conventional memory devices. Considering the rapid back-and-forth transfer of a large amount of information, emerging memory should demonstrate space efficiency, fast speed, and low-cost requirements. Accordingly, ferroelectric films based on HfO<italic toggle=\"yes\"><sub>x</sub></italic> are being intensively researched owing to their high energy efficiency and compatibility with complementary metal oxide semiconductor. Particularly, owing to the simplicity of their structure, low power, and less variation, hafnia-based ferroelectric tunnel junctions (FTJs) stand out among ferroelectric memories. Numerous studies have demonstrated the improved ferroelectricity of FTJs using various engineering methods, including doping, annealing, and varying electrodes. To improve the properties of HfO<italic toggle=\"yes\"><sub>x</sub></italic>-based FTJs and enhance their applications, it is necessary to organize and discuss recent studies and prospects. Therefore, this paper reviews in-depth and comprehensive studies on FTJs and their advantages compared to other emerging devices. Additionally, in-memory computing applications, outlook, and challenges of hafnia-based FTJs are presented.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of a continuous optical discharge sustained by short-wave infrared laser radiation in high pressure argon 高压氩气中短波红外激光辐射持续光放电的特性
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad6f23
V N Androsenko, M A Kotov, N G Solovyov, A N Shemyakin, M Yu Yakimov
{"title":"Properties of a continuous optical discharge sustained by short-wave infrared laser radiation in high pressure argon","authors":"V N Androsenko, M A Kotov, N G Solovyov, A N Shemyakin, M Yu Yakimov","doi":"10.1088/1361-6463/ad6f23","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6f23","url":null,"abstract":"This paper is devoted to the experimental study of the characteristics of a continuous optical discharge (COD) sustained by high power continuous wave laser radiation at a wavelength <italic toggle=\"yes\">λ</italic> = 1.08 <italic toggle=\"yes\">μ</italic>m in high pressure argon. New data on the COD threshold laser power dependence of argon pressure in the range 20–50 bar is obtained. The COD threshold laser power is shown to be in good agreement with the data obtained by other authors and theoretical evaluations provided the contribution of plasma energy loss due to thermal radiation is taken into account properly. The maximum plasma temperature was estimated to be 20–21 kk or higher, favorable to obtain high UV spectral radiance. A study of the convective plume oscillations around COD in argon has been carried out. It is found that in the pressure range 25–35 bars the growth of the laser radiation power leads to a decrease in convection oscillation frequency from 33 to 29 Hz, while the radius of the convective plume grows accordingly. The oscillation frequency ν and characteristic radius of the convective plume <italic toggle=\"yes\">r</italic><sub>0</sub> were found to obey the similarity relation <inline-formula>\u0000<tex-math><?CDATA $nu = 0.5sqrt {{g mathord{left/ {vphantom {g {2{r_0}}}} right. } {2{r_0}}}} $?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn><mml:msqrt><mml:mrow><mml:mi>g</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mrow><mml:msub><mml:mi>r</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:msqrt></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6f23ieqn1.gif\"></inline-graphic></inline-formula> previously established in experiments with COD in xenon. These results are promising for using COD in argon as a high brightness broadband UV radiation source.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of plasma process-induced mechanical property change in SiN films using a cyclic nanoindentation technique 利用循环纳米压痕技术评估等离子工艺诱导的氮化硅薄膜机械性能变化
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad6faf
Takahiro Goya, Keiichiro Urabe, Koji Eriguchi
{"title":"Evaluation of plasma process-induced mechanical property change in SiN films using a cyclic nanoindentation technique","authors":"Takahiro Goya, Keiichiro Urabe, Koji Eriguchi","doi":"10.1088/1361-6463/ad6faf","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6faf","url":null,"abstract":"Recently, plasma process-induced damage (PID) has garnered significant interest in the design of thin dielectric films implemented in semiconductor devices. Silicon nitride (SiN) films, a material of interest in strain engineering, are found to suffer from PID because they are exposed to various plasmas during device manufacturing processes. Only a limited amount of experimental evidence is available at present regarding plasma-induced mechanical property changes of SiN films. In this study, we investigated the mechanical property change in SiN and SiO<sub>2</sub> films using a cyclic nanoindentation technique. We focused on the contact stiffness (<italic toggle=\"yes\">S</italic>) as the principal mechanical property parameter. Firstly, a single loading/unloading test confirmed an increase in <italic toggle=\"yes\">S</italic> after Ar and He plasma exposures. Subsequently, we examined the time-dependent features of damaged SiN and SiO<sub>2</sub> films under cyclic loading/unloading. From the cyclic test, an increase in <italic toggle=\"yes\">S</italic> was seen with the number of loading/unloading cycles (<italic toggle=\"yes\">N</italic>) for both SiN and SiO<sub>2</sub> films. A larger increase in <italic toggle=\"yes\">S</italic> was observed for the damaged SiN, while no significant increase was seen for the damaged SiO<sub>2</sub> films. The observed increase in <italic toggle=\"yes\">S</italic> and its time dependence are attributed to the strain developed by the created defects (e.g. interstitial species) and the reconstruction and stabilization of plasma-damaged Si–N networks with created defects, respectively. The time-dependent <italic toggle=\"yes\">S</italic> analysis under cyclic loading/unloading is useful for evaluating the effects of PID on the mechanical properties of thin films.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-area gapped edge states in a valley photonic crystal heterostructure 山谷光子晶体异质结构中的大面积间隙边缘态
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad714a
Meize Li, Yahong Liu, Xin Zhou, Lianlian Du, Peng Li, Liyun Tao, Kun Song, Zhenfei Li, Xiaopeng Zhao
{"title":"Large-area gapped edge states in a valley photonic crystal heterostructure","authors":"Meize Li, Yahong Liu, Xin Zhou, Lianlian Du, Peng Li, Liyun Tao, Kun Song, Zhenfei Li, Xiaopeng Zhao","doi":"10.1088/1361-6463/ad714a","DOIUrl":"https://doi.org/10.1088/1361-6463/ad714a","url":null,"abstract":"Recent works exploiting photonic valley Hall effect show that large-area topological states can be realized by inserting gapless photonic crystal structures into topological interfaces, thus effectively introducing mode width degree of freedom. However, the previously reported works focus on gapless edge states. It is rare to investigate gapped edge states, especially large-area gapped edge states. In this paper, large-area gapped edge states in a valley photonic crystal heterostructure are achieved and experimentally proved. Compared with large-area gapless topological states, the present gapped edge states are more localized, which provides a more effective way to manipulate electromagnetic waves. We implement a topological energy concentrator and topological resonator cavity based on the large-area topological transmission with the gapped edge states. It is expected that our results broaden photonic systems, which can be used in topological lasing, field enhancement, and high-capacity energy transport.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and modeling of the role of interface defects in the optical degradation of InGaN/GaN LEDs 界面缺陷在 InGaN/GaN LED 光衰减中作用的研究与建模
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad7039
Nicola Roccato, Francesco Piva, Matteo Buffolo, Carlo De Santi, Nicola Trivellin, Camille Haller, Jean-François Carlin, Nicolas Grandjean, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini
{"title":"Investigation and modeling of the role of interface defects in the optical degradation of InGaN/GaN LEDs","authors":"Nicola Roccato, Francesco Piva, Matteo Buffolo, Carlo De Santi, Nicola Trivellin, Camille Haller, Jean-François Carlin, Nicolas Grandjean, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini","doi":"10.1088/1361-6463/ad7039","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7039","url":null,"abstract":"We investigate the degradation mechanisms of In<sub>0.2</sub>Ga<sub>0.8</sub>N/GaN light emitting diodes through combined experimental analysis and simulations. The devices were submitted to constant current stress at 100 mA. Depending on the measuring current level, two degradation trends were observed: at high test currents (e.g. 200 mA), a monotonic decrease in optical power was observed; at low test currents (e.g. 5 mA), an initial degradation was observed, followed by an improvement in device efficiency (positive ageing). For the first time, such recovery effect was analyzed and modeled, as due to the generation of charged defects at the InGaN/GaN interface, resulting in the increase in the injection efficiency at low bias levels. The role of interface defects was validated by means of numerical simulations, with good agreement with the experimental data.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance matching design for capacitively coupled plasmas considering coaxial cables 考虑同轴电缆的电容耦合等离子体阻抗匹配设计
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad7151
Shimin Yu, Zili Chen, Jingwen Xu, Hongyu Wang, Lu Wang, Zhijiang Wang, Wei Jiang, Julian Schulze, Ya Zhang
{"title":"Impedance matching design for capacitively coupled plasmas considering coaxial cables","authors":"Shimin Yu, Zili Chen, Jingwen Xu, Hongyu Wang, Lu Wang, Zhijiang Wang, Wei Jiang, Julian Schulze, Ya Zhang","doi":"10.1088/1361-6463/ad7151","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7151","url":null,"abstract":"Capacitively coupled plasmas (CCPs) are widely used in plasma processing applications, where efficient power coupling between the radio frequency (RF) source and the plasma is crucial. In practical CCP systems, impedance matching networks (IMNs) are employed to minimize power reflection. However, the presence of coaxial cables can significantly impact plasma impedance and matching performance. We develop a comprehensive simulation framework for the IMN design of CCPs, fully considering the effects of RF coaxial cables. The model self-consistently couples a distributed transmission line (TL) model, a lumped-element circuit model, and an electrostatic particle-in-cell model. This coupled model is used to investigate the impact of coaxial cables on matching performance under various discharge conditions and cable configurations. The simulation results indicate that the optimal power transmission efficiency was achieved after 6 matching iterations. The power coupled to the CCP increased from 2.7 W before matching to 180.9 W, and the reflection coefficient ultimately decreased to 0.003. The results also reveal that neglecting the cables will lead to a decrease in the power dissipated in the CCP. The proposed method demonstrates effectiveness in achieving impedance matching for different gas pressures (75–300 mTorr) and cable lengths. It can be concluded that the matching speed is faster for an appropriate cable length. This work provides valuable insights into the role of TLs in CCP impedance matching and offers a practical tool for optimizing power delivery in realistic CCP systems with RF coaxial cables.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency performance in nanoscale vacuum channel transistors with gate-cathode height difference 具有栅极-阴极高度差的纳米级真空沟道晶体管的高频性能
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad70c2
Yuezhong Chen, Xin Zhai, Congyuan Lin, Ziyang Liu, Xiaobing Zhang, Ji Xu
{"title":"High-frequency performance in nanoscale vacuum channel transistors with gate-cathode height difference","authors":"Yuezhong Chen, Xin Zhai, Congyuan Lin, Ziyang Liu, Xiaobing Zhang, Ji Xu","doi":"10.1088/1361-6463/ad70c2","DOIUrl":"https://doi.org/10.1088/1361-6463/ad70c2","url":null,"abstract":"Nanoscale vacuum channel transistors (NVCTs) have garnered considerable interest due to their outstanding high frequency characteristics and high reliability, stemming from a distinct carrier transport mechanism compared to solid-state devices. Electrons traverse the nanoscale vacuum channel through scattering-free ballistic transport. However, existing research has predominantly focused on the structural design and optimization of NVCTs, with relatively few studies delving into their high frequency performance. Hence, alongside structural exploration and optimizing, investigating the high-frequency characteristics of NVCTs assumes particular importance. In this study, a novel NVCTs with a gate-cathode height difference structure was proposed and its electrical characteristics were simulated. Simulation results reveal that the presence of gate-cathode height difference effectively enhance the DC characteristics of NVCTs. Moreover, high frequency simulation demonstrate that the proposed device can operate frequency exceeding 1 THz. Whitin the GHz and even terahertz (THz) range, NVCTs exhibits exceptional high frequency properties, including ultrafast response times and minimal distortion. These findings not only offer insights for future structural design and optimization of NVCTs but also underscore the potential of NVCTs in radio frequency and THz applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of the 6e thiolate-protected Au24(SR)18 nanocluster 6e 硫醇保护 Au24(SR)18 纳米簇的合理设计
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI: 10.1088/1361-6463/ad6fac
Hongsheng Zhai, Man Liu, Endong Wang, Yufang Liu
{"title":"Rational design of the 6e thiolate-protected Au24(SR)18 nanocluster","authors":"Hongsheng Zhai, Man Liu, Endong Wang, Yufang Liu","doi":"10.1088/1361-6463/ad6fac","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6fac","url":null,"abstract":"The growth mechanism of thiolate-protected gold nanoclusters (AuNCs) has been advanced, but precise crystal structure information is lacking. Recent mass spectrometry and nuclear magnetic resonance analysis experiments traced the Au<sub>24</sub>(SR)<sub>18</sub> cluster as a non-negligible byproduct intermediate during the reaction between [Au<sub>25</sub>(SR)<sub>18</sub>]<sup>−</sup>, the flagship cluster of the remarkable nanocluster ship, and Au<sub>25</sub>(SR)<sub>19</sub>, a cluster with 25 Au atoms but featuring a completely different structure than the [Au<sub>25</sub>(SR)<sub>18</sub>]<sup>−</sup> cluster. However, the precise structure of the Au<sub>24</sub>(SR)<sub>18</sub> cluster is unknown. In this study, a total of seven Au<sub>24</sub>(SR)<sub>18</sub> isomers were constructed using the grand unified model. Density functional theory calculations demonstrated that two of them could be considered quasi-degenerate suggesting that both might coexist in experiments. Geometrical features, electronic structures, and absorption spectra were calculated for potential future comparisons. This work contributes to fully interpreting the growth mechanism of AuNCs .","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilayer Ge8Sb92/Ge2Sb2Te5 thin films: unveiling distinct resistance states and enhanced performance for phase change random access memory 多层 Ge8Sb92/Ge2Sb2Te5 薄膜:为相变随机存取存储器揭示不同的电阻状态并提高性能
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-08 DOI: 10.1088/1361-6463/ad6a25
Liu Liu, Anding Li, Yukun Chen, Ruirui Liu, Jiayue Xu, Jiwei Zhai, Zhitang Song and Sannian Song
{"title":"Multilayer Ge8Sb92/Ge2Sb2Te5 thin films: unveiling distinct resistance states and enhanced performance for phase change random access memory","authors":"Liu Liu, Anding Li, Yukun Chen, Ruirui Liu, Jiayue Xu, Jiwei Zhai, Zhitang Song and Sannian Song","doi":"10.1088/1361-6463/ad6a25","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6a25","url":null,"abstract":"This study investigates the phase-change properties of [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1 multilayer thin films, elucidating three distinct resistance states originating from two structural transitions: initial Sb precipitation and Ge2Sb2Te5-FCC crystallization, followed by Ge2Sb2Te5-FCC to Ge2Sb2Te5-HEX transformation with additional Sb precipitation. The phase transitions induce two abrupt changes in resistance at temperatures of 169.8 °C and 197.7 °C, respectively, with corresponding data retention temperatures of 97 °C and 129 °C, indicating robust thermal stability. The [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1-based phase change random access memory (PCRAM) device demonstrates reversible switching characteristics and multi-level storage capabilities within 20 ns, showcasing enhanced phase-change speed and storage density. In summary, [Ge8Sb92(25 nm)-Ge2Sb2Te5(25 nm)]1 demonstrates enhanced thermal stability, swift phase transition, and increased storage density relative to conventional Ge2Sb2Te5, establishing it as a promising new phase-change material for PCRAM applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passivated indium oxide thin-film transistors with high field-effect mobility (128.3 cm2 V−1 s−1) and low thermal budget (200 °C) 具有高场效应迁移率(128.3 cm2 V-1 s-1)和低热预算(200 °C )的钝化氧化铟薄膜晶体管
IF 3.4 3区 物理与天体物理
Journal of Physics D: Applied Physics Pub Date : 2024-08-08 DOI: 10.1088/1361-6463/ad6a23
Na Xiao, Vishal Khandelwal, Saravanan Yuvaraja, Dhanu Chettri, Genesh Mainali, Zhiyuan Liu, Mohamed Ben Hassine, Xiao Tang and Xiaohang Li
{"title":"Passivated indium oxide thin-film transistors with high field-effect mobility (128.3 cm2 V−1 s−1) and low thermal budget (200 °C)","authors":"Na Xiao, Vishal Khandelwal, Saravanan Yuvaraja, Dhanu Chettri, Genesh Mainali, Zhiyuan Liu, Mohamed Ben Hassine, Xiao Tang and Xiaohang Li","doi":"10.1088/1361-6463/ad6a23","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6a23","url":null,"abstract":"Here, we demonstrate a high-mobility indium oxide (In2O3) thin-film transistor (TFT) with a sputtered alumina (Al2O3) passivation layer (PVL) with a low thermal budget (200 °C). The sputtering process of the Al2O3 PVL plays a positive role in improving the field-effect mobility (µFE) and current on/off ratio (ION/IOFF) performance of the In2O3 TFTs. However, these enhancements are limited due to the high density of intrinsic trap defects in the In2O3 channels, as reflected in their large hysteresis and poor bias stability. Treating the In2O3 channel with oxygen (O2) plasma prior to sputtering the Al2O3 PVL results in notable improvements. Specifically, a high µFE of 128.3 cm2V−1 s−1, a high ION/IOFF over 106 at VDS of 0.1 V, a small hysteresis of 0.03 V, and a negligible threshold voltage shift under negative bias stress are achieved in the passivated In2O3 TFT (with O2 plasma pretreatment), representing a significant improvement compared to the passivated In2O3 TFT (without O2 plasma pretreatment) and the unpassivated In2O3 TFT. The remarkable reduction of intrinsic trap defects in the passivated In2O3 TFT compensated by O2 plasma is the primary mechanism underlying the improvement in µFE and bias stability, as validated by x-ray photoelectron spectra, hysteresis analysis, and temperature-stress electrical characterizations. Plasma treatment effectively compensates for intrinsic trap defects in oxide semiconductor (OS) channels, when combined with sputter passivation, resulting in a significant enhancement of the overall performance of OS TFTs under low thermal budgets. This approach offers valuable insights into advancing OS TFTs with satisfactory driving capability and wide applicability.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信