Simulation study on electrical tree propagation under electrical and mechanical stresses

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Hucheng Liang, Boxue Du
{"title":"Simulation study on electrical tree propagation under electrical and mechanical stresses","authors":"Hucheng Liang, Boxue Du","doi":"10.1088/1361-6463/ad7152","DOIUrl":null,"url":null,"abstract":"Epoxy insulators in gas-insulated power apparatus are subjected to the combined effects of electrical and mechanical loads. In this work, a simulation model is built based on the energy theory to explore the electrical tree growth of epoxy resin under tensile and compressive stresses. With increasing AC voltage, the electrical tree growth is promoted, exhibiting a morphology with more branches. Tensile stress accelerates the electrical tree growth, while proper compressive stress has the opposite effect. However, when the compressive stress exceeds a certain value, electrical tree growth is promoted again. When the mechanical stress is vertical to the needle electrode, these effects primarily impact the length of the trees. Conversely, in parallel cases, mechanical stress mainly affects the width of the electrical trees. Filler doping play the role of obstacles as well as enhancing the electric field concentration, the electrical tree growth is firstly inhibited and then promoted as the doping content increases. The electrical tree morphologies of simulation and experiment are in good consistency, proving the reasonability of the simulation model.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad7152","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy insulators in gas-insulated power apparatus are subjected to the combined effects of electrical and mechanical loads. In this work, a simulation model is built based on the energy theory to explore the electrical tree growth of epoxy resin under tensile and compressive stresses. With increasing AC voltage, the electrical tree growth is promoted, exhibiting a morphology with more branches. Tensile stress accelerates the electrical tree growth, while proper compressive stress has the opposite effect. However, when the compressive stress exceeds a certain value, electrical tree growth is promoted again. When the mechanical stress is vertical to the needle electrode, these effects primarily impact the length of the trees. Conversely, in parallel cases, mechanical stress mainly affects the width of the electrical trees. Filler doping play the role of obstacles as well as enhancing the electric field concentration, the electrical tree growth is firstly inhibited and then promoted as the doping content increases. The electrical tree morphologies of simulation and experiment are in good consistency, proving the reasonability of the simulation model.
电气和机械应力下电气树传播的模拟研究
气体绝缘电力设备中的环氧绝缘子受到电气和机械负载的共同影响。本研究基于能量理论建立了一个仿真模型,以探讨环氧树脂在拉伸和压缩应力作用下的电树生长。随着交流电压的增加,电树的生长得到促进,呈现出分支增多的形态。拉应力会加速电树的生长,而适当的压应力则会产生相反的效果。然而,当压应力超过一定值时,又会促进电气树的生长。当机械应力垂直于针电极时,这些效应主要影响树的长度。相反,在平行情况下,机械应力主要影响电树的宽度。填料掺杂在提高电场浓度的同时也起到了障碍物的作用,随着掺杂含量的增加,电树的生长先受到抑制,然后得到促进。模拟和实验的电树形态具有良好的一致性,证明了模拟模型的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信