通过表面钝化调节硅纳米线的热导率

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani
{"title":"通过表面钝化调节硅纳米线的热导率","authors":"Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani","doi":"10.1088/1361-6463/ad6fae","DOIUrl":null,"url":null,"abstract":"Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths <inline-formula>\n<tex-math><?CDATA $w \\unicode{x2A7D} 2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>w</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn1.gif\"></inline-graphic></inline-formula> nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient <italic toggle=\"yes\">κ</italic>. While the expected trend of <inline-formula>\n<tex-math><?CDATA $\\kappa \\propto w$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>κ</mml:mi><mml:mo>∝</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn2.gif\"></inline-graphic></inline-formula> is observed for all SiNWs, surface passivation provides an added flexibility of tuning <italic toggle=\"yes\">κ</italic> with the surface coverage concentration <italic toggle=\"yes\">c</italic> of passivated atoms. Indeed, with respect to the bulk <italic toggle=\"yes\">κ</italic>, passivation of SiNW reduces <italic toggle=\"yes\">κ</italic> by 75%–80% for <inline-formula>\n<tex-math><?CDATA $c \\to 50\\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo accent=\"false\" stretchy=\"false\">→</mml:mo><mml:mn>50</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn3.gif\"></inline-graphic></inline-formula> and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to <italic toggle=\"yes\">κ</italic>. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in <italic toggle=\"yes\">κ</italic>.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the thermal conductivity of silicon nanowires by surface passivation\",\"authors\":\"Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani\",\"doi\":\"10.1088/1361-6463/ad6fae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths <inline-formula>\\n<tex-math><?CDATA $w \\\\unicode{x2A7D} 2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>w</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn1.gif\\\"></inline-graphic></inline-formula> nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient <italic toggle=\\\"yes\\\">κ</italic>. While the expected trend of <inline-formula>\\n<tex-math><?CDATA $\\\\kappa \\\\propto w$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>κ</mml:mi><mml:mo>∝</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn2.gif\\\"></inline-graphic></inline-formula> is observed for all SiNWs, surface passivation provides an added flexibility of tuning <italic toggle=\\\"yes\\\">κ</italic> with the surface coverage concentration <italic toggle=\\\"yes\\\">c</italic> of passivated atoms. Indeed, with respect to the bulk <italic toggle=\\\"yes\\\">κ</italic>, passivation of SiNW reduces <italic toggle=\\\"yes\\\">κ</italic> by 75%–80% for <inline-formula>\\n<tex-math><?CDATA $c \\\\to 50\\\\%$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>c</mml:mi><mml:mo accent=\\\"false\\\" stretchy=\\\"false\\\">→</mml:mo><mml:mn>50</mml:mn><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn3.gif\\\"></inline-graphic></inline-formula> and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to <italic toggle=\\\"yes\\\">κ</italic>. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in <italic toggle=\\\"yes\\\">κ</italic>.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6fae\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6fae","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们利用大尺度分子动力学模拟研究了裸硅纳米线(SiNW)和表面钝化硅纳米线(SiNW)的热导率。对于截面宽度 w⩽2 nm 的硅纳米线,由于表面的非晶化以及一定比例硅原子的蒸发,硅纳米线变得不稳定。所观察到的表面(不)稳定性与表面 Si 原子相对于主体 Si 的巨大过剩能量 Δ 有关,这是因为表面原子的配位较少且存在悬空键。我们首先提出了一种实用的方法,利用 Δ 作为指导工具,用氢或氧钝化这些悬空键,从而稳定 SiNW。这些钝化的 SiNWs 可用于计算导热系数 κ。虽然所有 SiNW 都能观察到预期的 κ∝w 趋势,但表面钝化提供了更大的灵活性,可通过钝化原子的表面覆盖浓度 c 来调整 κ。事实上,相对于体κ,在 c→50% 的情况下,SiNW 的钝化会使κ降低 75%-80% ,而在完全钝化的样品中,κ会增加 50%。通过谱能密度分析声子带结构,我们讨论了表面和内核对κ的不同贡献。我们的研究结果还表明,表面钝化会增加 SiNW 的硬度,从而提高 κ 的可调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning the thermal conductivity of silicon nanowires by surface passivation
Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths w2 nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient κ. While the expected trend of κw is observed for all SiNWs, surface passivation provides an added flexibility of tuning κ with the surface coverage concentration c of passivated atoms. Indeed, with respect to the bulk κ, passivation of SiNW reduces κ by 75%–80% for c50% and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to κ. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in κ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信