Zhao-Yang Ma, Jin-Shan He, Gan-Yun Huang and Liao-Liang Ke
{"title":"On adhesive contact between spheres with rolling adhesion","authors":"Zhao-Yang Ma, Jin-Shan He, Gan-Yun Huang and Liao-Liang Ke","doi":"10.1088/1361-6463/ad7038","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7038","url":null,"abstract":"The tendency of relative motion via rolling between contacting objects exists in various aspects of industry and nature because, in many practical situations, forces and moments may be simultaneously induced at the contacting interfaces. Due to the presence of adhesion, which may be prominent on small scales, research on contacts with the tendency to roll, termed herein as rolling adhesion, is very limited. In the present work, a novel double-Hertz model is developed for adhesive contact between spherical objects subjected to the combined action of normal forces and moments. The results from the new model agree well with available numerical simulations and experimental results. It has been demonstrated that the contact behavior with the effect of rolling adhesion seemingly resembles that of conventional adhesive contact, but the applied moment may impact the pull-off force and may even induce novel contact instability if large enough. The resistance moment at the interface has also been obtained analytically, which is proportional to adhesion hysteresis and contact area. Given the applicability to the full range of the Tabor parameter and nonsingular stresses involved, these results might shed light on adhesive contacts with rolling adhesion and help to characterize them better than existent models.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoying Xi, Zeng Liu, Junpeng Fang, Ang Bian, Shaohui Zhang, Jia-Han Zhang, Lei Li, Yufeng Guo and Weihua Tang
{"title":"Etching of Ga2O3: an important process for device manufacturing","authors":"Zhaoying Xi, Zeng Liu, Junpeng Fang, Ang Bian, Shaohui Zhang, Jia-Han Zhang, Lei Li, Yufeng Guo and Weihua Tang","doi":"10.1088/1361-6463/ad773d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad773d","url":null,"abstract":"Etching plays a key role in processing and manufacturing electronic and optoelectronic devices. For ultra-wide bandgap semiconductor gallium oxide (Ga2O3), its etching investigations and evolution mechanism are still at the earlier stage, and some more research gumption should be invested. In this review, we make a summary on the etching of Ga2O3, including dry (plasma) etching, wet chemical etching, and photoelectrochemical etching, and discuss the etching results, existing problems, and feasible solutions, in order to provide guidance and advises for furtherly developing the Ga2O3 etching and Ga2O3-based electronic and optoelectronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"30 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Yuan, Guoxiang Sun, Haorui Xue, Weidong Ding, Shaohao Nie and Kunhao Yu
{"title":"Influence factors and improvement scheme on the breakdown behavior of pseudospark switch","authors":"Qi Yuan, Guoxiang Sun, Haorui Xue, Weidong Ding, Shaohao Nie and Kunhao Yu","doi":"10.1088/1361-6463/ad76b7","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76b7","url":null,"abstract":"High-power pulse generators are widely used in civil and military fields. The main switch directly determines the output characteristics of the high-power pulse generators, such as the voltage front time (tf). Pseudospark switches (PSS) show a promising future for middle voltage, high repetitive frequency pulse power applications. However, how to further improve the breakdown behavior without reducing its advantages is a challenging task. In this paper, the influence of operating parameters (anode voltage UA and gas pressure p) and structural parameter (number of cathode holes) on the breakdown behavior are investigated, the related mechanism are explained, and specific improvement schemes are proposed. It is found that the tf of the single channel PSS (SCPSS) decreased significantly with increasing p, but hardly varied with UA under moderate p. However, it is not a sound solution to increase the p excessively to reduce tf. Besides, increasing the number of cathode holes can obtain a shorter tf at low pressures (which implies superior repetition frequency performance). However, at 25 Pa, the jitter (which is defined as the standard deviation of tf in multiple tests) of the 2-channel PSS is larger than that of the SCPSS. And the jitter of the 4-channel and 8-channel PSS is also greater than 6 ns and 2 ns, respectively. Through experimental and simulation analyses, it can be explained as the stepwise penetration of the virtual anode and the non-simultaneous ignition of the channels. A scheme to increase the trigger energy (ϵ) has been adopted to improve the simultaneous ignition probability, while shortening tf and reducing jitter. After optimization, the good ignition probability of the 4-channel PSS has been improved to 82% and the jitter has been reduced to less than 1 ns at 25 Pa and 14.7 mJ.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun Liu, Ming Xu, Shengtao Chen, Li Sun, Liqing Zhang, Qianqian Li and Jiahao Wang
{"title":"Analysis of carrier dynamics and thermal effect of the GaAs photoconductive semiconductor switch in lock-on mode","authors":"Chun Liu, Ming Xu, Shengtao Chen, Li Sun, Liqing Zhang, Qianqian Li and Jiahao Wang","doi":"10.1088/1361-6463/ad76bd","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76bd","url":null,"abstract":"The lock-on effect of the gallium arsenide photoconductive semiconductor switch (GaAs PCSS) at repetition rate aggravates the current crowding and electric field distortion, which significantly increases the risk of switch damage or even failure. Therefore, it is of great significance to investigate the carrier transport and the heat generation mechanism for improving the performance and longevity of GaAs PCSS in lock-on mode. The internal physical process of an opposed-electrode GaAs PCSS at low optical energy and strong electric field is analyzed and discussed by experiment and simulation. A device-circuit hybrid simulation is employed to investigate the transient electric field, carrier concentration, and lattice temperature distribution within the GaAs PCSS in lock-on mode. The device temperature exhibits a positive correlation with the applied bias electric field, resulting in a peak temperature of 1037.25 K at an electric field of 38 kV cm−1. The temperature distribution within the GaAs PCSS indicates a greater possibility for thermal breakdown and damage near the electrodes.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"60 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Y Yang, X J Xiang, Z J Tan, X K Zhang, S Pan, J Chen and G Z Xu
{"title":"Heusler alloy Mn2CoAl: structural, magnetic and electronic properties","authors":"J Y Yang, X J Xiang, Z J Tan, X K Zhang, S Pan, J Chen and G Z Xu","doi":"10.1088/1361-6463/ad726d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad726d","url":null,"abstract":"In this study, we report on the detailed atomic ordering, magnetic and electrical properties of the Heusler alloy Mn2CoAl, studied via combined experimental methods and a theoretical calculation approach. Our studies confirm the Hg2CuTi-type crystal structure of Mn2CoAl with 25% anti-site disorder between Mn (B:1/4,1/4,1/4) and Co(C:1/2,1/2,1/2) sites. Neutron powder diffraction measurements identify the antiparallel spin couplings between Mn:A↓ and Mn:B↑, Co:C↑, resulting in a ferrimagnetic structure with a net magnetic moment of ∼1.6 μB at room temperature. In terms of the electronic calculations, we find that the anti-site atoms will contribute large densities of states at the Fermi level, thus destroying the spin gapless band structure and making Mn2CoAl a normal ferrimagnetic metal. This report is intended to establish a basic understanding of the structure and physical properties of Mn2CoAl.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengpeng Yang, Hongyang Guo, Ping Zhang, Shaomeng Wang and Yubin Gong
{"title":"Negative damping of terahertz plasmons in counter-streaming double-layer two-dimensional electron gases","authors":"Shengpeng Yang, Hongyang Guo, Ping Zhang, Shaomeng Wang and Yubin Gong","doi":"10.1088/1361-6463/ad76b9","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76b9","url":null,"abstract":"The plasmon excitation in two-dimensional electron gases is a significant way of achieving micro-nanoscale terahertz (THz) devices. Here, we establish a kinetic simulation model to study the THz plasmons amplification in a semiconductor double-quantum-well system with counter-streaming electron drift velocities. By comparing the simulation results with theoretical dispersion relations, we confirm two competing mechanisms of negative damping suitable for THz amplification: Cherenkov-type two-stream instability and a new non-Cherenkov mechanism called kinetic relaxation instability. The former is caused by the interlayer coupling of two slow plasmon modes and only exists when the drift velocities are much greater than the fermi velocities. The latter is a statistical effect caused by the momentum relaxation of electron-impurity scattering and predominates at lower drift velocities. We show that an approximate kinetic dispersion relation can accurately predict the wave growth rates of the two mechanisms. The results also indicate that the saturated plasmonic waves undergo strong nonlinearities such as wave distortion, frequency downshift, wave-packet formation, and spectrum broadening. The nonlinear evolution can be interpreted as the merging of bubble structures in the electron phase-space distribution. The present results not only reveal the potential mechanisms of the plasmonic instabilities in double-layer 2DEGs, but also provide a new guideline for the design of on-chip THz amplifiers.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gazal Gupta, Raghvendra Gupta, Amit Gupta and Deepak Kumar
{"title":"Electrochemical studies and diffusion kinetics in the Chevrel phase (Mo6S8) for rechargeable Mg batteries","authors":"Gazal Gupta, Raghvendra Gupta, Amit Gupta and Deepak Kumar","doi":"10.1088/1361-6463/ad703a","DOIUrl":"https://doi.org/10.1088/1361-6463/ad703a","url":null,"abstract":"Based on its availability, cost and stability, rechargeable Mg batteries (RMBs) are potential candidates to fulfill the futuristic demand for high energy density storage devices. However, they are minimally explored due to sluggish Mg ion diffusion in cathode materials. Literature suggests that the Chevrel phase (CP) (Mo6S8) holds promise as a cathode (positive electrode) for RMBs due to its open structure and self-healing properties during cycling. This study reports the electrochemical performance of Mo6S8 (synthesized using cost effective precursors (Cu–Mo–MoS2)) as a cathode for RMBs for the first time. The development of Mo6S8 is a two-step process: (i) synthesis of Cu2Mo6S8 via high energy milling method using Cu, Mo and MoS2 as precursors and (ii) leaching of Cu from Cu2Mo6S8. The morphological and structural characteristics of the developed materials are recorded using x-ray diffraction and field emission scanning electron microscopy. The developed Mo6S8 is cuboid-shaped with a rhombohedral unit cell. To record the electrochemical performance of Mo6S8 as a positive electrode for rechargeable Mg batteries (RMBs), CR2016 type half-cells are fabricated. It is observed that the initial discharge capacity was 89 mA h g−1 at a current density of 25 mA g−1 (1C = 128 mA g−1). Interestingly, the capacity increases from 89 to ≈100 mA h g−1 during 50 cycles which is higher than reported in the literature. The coulombic efficiency (CE) of ≈90% is observed for 100 cycles. Additionally, the over-potential decreases with an increase in cycle number. Importantly, the authors explained the diffusion behavior of Mg ions in Mo6S8 with 0.4 M 2(PhMgCl)-AlCl3/THF (APC) electrolyte via cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic intermittent titration (GITT) technique. The diffusion coefficients have been calculated and fall in the range of 10−8−10−14 cm2 s−1. Also, the authors explain the effect of outer site activation during cycling on the diffusion kinetics of the materials using the GITT technique. This investigation of diffusion kinetics of Mg ions in Mo6S8 may pave the way for evaluating various CPs as electrode materials for future rechargeable magnesium battery systems.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"178 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 85Rb transverse modulation magnetometer in the geophysical range based on atomic alignment states","authors":"Tao Shi, Ge Jin, Hong Zhang and Sheng Zou","doi":"10.1088/1361-6463/ad726f","DOIUrl":"https://doi.org/10.1088/1361-6463/ad726f","url":null,"abstract":"We have constructed a transverse modulated magnetometer based on spin alignment in a paraffin-coated 85 Rb cell operated in a geophysical magnetic field of 47.1 µT. When an orthogonal driving magnetic field ( axis) is resonant on the Larmor frequency ( axis), we have proposed a new method to zero the static residual magnetic fields in the transverse plane and achieved a sensitivity of with bandwidth of 200 Hz. The repump light ( ) redistributes the populations in the ground state, rendering the state dark. This effect significantly amplifies the optical rotation signals nearly fourfold. The numerical solution of the Liouville equation is in good agreement with the experimental results. By using perturbation treatment and employing appropriate approximations, the derived analytical expressions for optical rotation are deduced to succinctly elucidate the dynamics of atomic alignment under parametric modulation. These outcomes could be extended for the advancement of an alignment magnetometer that has been designed to detect a weak magnetic signal in the geophysical range.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"61 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sicheng Cao, Zhenxuan Chen, Runxuan Zhang, Chaoxian Tang, Zijun Chen, Ruixing Nie, Feng Zhao, Shenyi Huang and Zhengyong Song
{"title":"Anisotropic vanadium dioxide-based metasurfaces for polarization-multiplexed holograms in the terahertz region","authors":"Sicheng Cao, Zhenxuan Chen, Runxuan Zhang, Chaoxian Tang, Zijun Chen, Ruixing Nie, Feng Zhao, Shenyi Huang and Zhengyong Song","doi":"10.1088/1361-6463/ad760e","DOIUrl":"https://doi.org/10.1088/1361-6463/ad760e","url":null,"abstract":"Holography plays a significant role in optical research and has been utilized in numerous applications. Metasurface holograms are attracting more and more attention with the advancement of their efficient wavefront reshaping. However, the realization of multi-channel holograms and dynamic switching of them still remain challenging in the terahertz band. In this paper, anisotropic vanadium dioxide (VO2) metasurfaces are used to realize four-channel holograms at 1.5 THz. It is assembled by a set of VO2 meta-atoms with independent phase control for different channels. Depending on the polarization of incident wave and the state of VO2, four channels are independently selected. After optimization to eliminate crosstalk between top and bottom layers, two holograms are projected under x- and y-polarized incidences when VO2 is metallic. Similarly, two additional holograms are achieved as VO2 is insulating. As a novel solution to terahertz multi-channel holography, this work may be applied to compact optical system and high-volume optical encryption.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"73 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuexuan Sun, Chang-Heng Li, Yunfeng Long, Zhengyong Huang and Jian Li
{"title":"Research on flexible antenna and distributed deep learning pattern recognition for partial discharge monitoring of transformer","authors":"Yuexuan Sun, Chang-Heng Li, Yunfeng Long, Zhengyong Huang and Jian Li","doi":"10.1088/1361-6463/ad759f","DOIUrl":"https://doi.org/10.1088/1361-6463/ad759f","url":null,"abstract":"Power transformer is an important part of the power system, and continuous monitoring of partial discharges can provide a more reasonable program for fault diagnosis and operational maintenance of the transformer. However, the rigid partial discharge UHF antenna can not be installed in a conformal fit with the monitored equipment, and the partial discharge UHF signal attenuation is serious, resulting in low detection energy efficiency and gain performance can not meet the demand. The centralized deep learning local discharge pattern recognition method has low training efficiency, and distributed deep learning can improve the training efficiency, but the heterogeneous data from multiple sources will reduce the model accuracy. Due to this, this paper designs a UHF flexible composite helical antenna with miniaturization, wide bandwidth, high gain and high bending deformation stability, and investigates a federated learning pattern recognition method based on residual contraction network, which substantially improves the training efficiency while ensuring the accuracy.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}