{"title":"Ile-Pro-Pro attenuates sympathetic activity and hypertension.","authors":"Jun-Liu Chen, Rui Ge, Xiu-Zhen Li, Yue Zhang, Wen-Yuan Hao, Na Li, Zhi-Qin Xu, Qi Chen, Yue-Hua Li, Guo-Qing Zhu, Xiao Tan","doi":"10.1007/s13105-024-01034-x","DOIUrl":"10.1007/s13105-024-01034-x","url":null,"abstract":"<p><p>Isoleucine-proline-proline (Ile-Pro-Pro, IPP) is a natural food source tripeptide that inhibits angiotensin-converting enzyme (ACE) activity. The aim of this study was to determine the central and peripheral roles of IPP in attenuating sympathetic activity, oxidative stress and hypertension. Male Sprague-Dawley rats were subjected to sham-operated surgery (Sham) or two-kidney one-clip (2K1C) surgery to induce renovascular hypertension. Renal sympathetic nerve activity and blood pressure were recorded. Bilateral microinjections of IPP to hypothalamic paraventricular nucleus (PVN) attenuated sympathetic activity (-16.1 ± 2.5%, P < 0.001) and hypertension (-8.7 ± 1.5 mmHg, P < 0.01) in 2K1C rats by inhibiting ACE activity and subsequent angiotensin II and superoxide production in the PVN. Intravenous injections of IPP also attenuated sympathetic activity (-15.1 ± 2.1%, P < 0.001) and hypertension (-16.8 ± 2.3 mmHg, P < 0.001) via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. The duration of the effects of the intravenous IPP was longer than those of the PVN microinjection, but the sympatho-inhibitory effect of intravenous injections occurred later than that of the PVN microinjection. Intraperitoneal injection of IPP (400 pmol/day for 20 days) attenuated hypertension and vascular remodeling via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. These results indicate that IPP attenuates hypertension and sympathetic activity by inhibiting ACE activity and oxidative stress. The sympathoinhibitory effect of peripheral IPP is mainly caused by the ACE inhibition in PVN, and the antihypertensive effect is related to the sympathoinhibition and the arterial ACE inhibition. Long-term intraperitoneal IPP therapy attenuates hypertension, oxidative stress and vascular remodeling.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"585-598"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iker Gómez-García, Alfredo Fernández-Quintela, María Puy Portillo, Jenifer Trepiana
{"title":"Changes in brown adipose tissue induced by resveratrol and its analogue pterostilbene in rats fed with a high-fat high-fructose diet.","authors":"Iker Gómez-García, Alfredo Fernández-Quintela, María Puy Portillo, Jenifer Trepiana","doi":"10.1007/s13105-023-00985-x","DOIUrl":"10.1007/s13105-023-00985-x","url":null,"abstract":"<p><p>Natural bioactive compounds have attracted a great deal of attention since some of them can act as thermogenesis activators. In recent years, special interest has been placed on resveratrol and its analogue pterostilbene, a dimethylether derivative that shows higher bioavailability. The aim of the present study is to compare the effects of resveratrol and its derivative pterostilbene on the thermogenic capacity of interscapular brown adipose tissue (iBAT) in rats under a high-fat high-fructose diet. Rats were divided into four experimental groups: control, high-fat high-fructose diet (HFHF) and HFHF diet supplemented with 30 mg/kg body weight/day of pterostilbene (PT30) or resveratrol (RSV30), for eight weeks. Weights of adipose tissues, iBAT triglycerides, carnitine palmitoyltransferase 1A (CPT1A) and citrate synthase (CS) activities, protein levels of uncoupling protein 1 (UCP1), sirtuins (SIRT1 and 3), AMP-activated protein kinase (AMPK), glucose transporter (GLUT4), fatty acid synthase (FAS), nuclear respiratory factor (NRF1), hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), CD36 and FATP1 fatty acid transporters, peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) activation and the batokines EPDR1 and NRG4 were assessed in iBAT. The results show that some key proteins related to thermogenesis were modified by either pterostilbene or resveratrol, although the lack of effects on other crucial proteins of the thermogenic machinery suggest that these compounds were not able to stimulate this process in iBAT. Overall, these data suggest that the effects of stilbenes on brown adipose tissue thermogenic capacity depend on the metabolic status, and more precisely on the presence or absence of obesity, although further studies are needed to confirm this hypothesis.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"627-637"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pauline Beaumont, Samuel Amintas, Stéphanie Krisa, Arnaud Courtois, Tristan Richard, Itziar Eseberri, Maria P Portillo
{"title":"Glucuronide metabolites of trans-ε-viniferin decrease triglycerides accumulation in an in vitro model of hepatic steatosis.","authors":"Pauline Beaumont, Samuel Amintas, Stéphanie Krisa, Arnaud Courtois, Tristan Richard, Itziar Eseberri, Maria P Portillo","doi":"10.1007/s13105-024-01035-w","DOIUrl":"10.1007/s13105-024-01035-w","url":null,"abstract":"<p><p>Trans-ε-viniferin, a resveratrol dimer found mainly in grapevine wood, has shown protective capacities against hepatic steatosis in vivo. Nevertheless, this compound is very poorly bioavailable. Thus, the aim of the present study is to determine the potential anti-steatotic properties of 1 and 10 µM of trans-ε-viniferin and its four glucuronide metabolites in AML-12 cells treated with palmitic acid as an in vitro model of hepatic steatosis. The effect of the molecules in cell viability and triglyceride accumulation, and the underlying mechanisms of action by Real-Time PCR and Western Blot were analysed, as well as the quantification of trans-ε-viniferin and the identified bioactive metabolite inside cells and their incubation media. Interestingly, we were able to determine the triglyceride-lowering property of one of the glucuronides (trans-ε-viniferin-2-glucuronide), which acts on de novo lipogenesis, fatty acid uptake and triglyceride assembly. The glucuronides of trans-ε-viniferin would therefore be partly responsible for the in vivo observed anti-steatotic properties of the parent compound.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"685-696"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of exosome derived miRNAs in inter-cell crosstalk among insulin-related organs in type 2 diabetes mellitus.","authors":"Ting Lu, Ying Zheng, Xiaoling Chen, Zhiyong Lin, Chaoqi Liu, Chengfu Yuan","doi":"10.1007/s13105-024-01026-x","DOIUrl":"10.1007/s13105-024-01026-x","url":null,"abstract":"<p><p>Exosomes are small extracellular vesicles secreted by almost all cell types, and carry diverse cargo including RNA, and other substances. Recent studies have focused exosomal microRNAs (miRNAs) on various human diseases, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (METS) which accompany the occurrence of insulin resistance. The regulation of insulin signaling has connected with some miRNA expression which play a significant regulatory character in insulin targeted cells or organs, such as fat, muscle, and liver. The miRNAs carried by exosomes, through the circulation in the body fluids, mediate all kinds of physiological and pathological process involved in the human body. Studies have found that exosome derived miRNAs are abnormally expressed and cross-talked with insulin targeted cells or organs to affect insulin pathways. Further investigations of the mechanisms of exosomal miRNAs in T2DM will be valuable for the diagnostic biomarkers and therapeutic targets of T2DM. This review will summarize the molecular mechanism of action of the miRNAs carried by exosomes which are secreted from insulin signaling related cells, and elucidate the pathogenesis of insulin resistance to provide a new strategy for the potential diagnostic biomarkers and therapeutic targets for the type 2 diabetes.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"501-510"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140866986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fermin I Milagro, Frédéric Capel, Silvia Lorente-Cebrián
{"title":"Editorial Special Issue: 2022 consortium for trans-pyrenean investigations on obesity and diabetes.","authors":"Fermin I Milagro, Frédéric Capel, Silvia Lorente-Cebrián","doi":"10.1007/s13105-024-01051-w","DOIUrl":"10.1007/s13105-024-01051-w","url":null,"abstract":"<p><p>This Special Issue of the Journal of Physiology and Biochemistry contains 7 contributions that have been elaborated in the context of the mini-network \"Consortium of Trans-Pyrenean Investigations on Obesity and Diabetes\" (CTPIOD), which is on its 19th year of existence. This scientific community, mostly involving research groups from France and Spain, but also open to participants coming from other countries, is focused on investigating the molecular and physiological mechanisms implicated in the development of obesity, diabetes, non-alcoholic fatty liver disease, and other noncommunicable diseases, as well as new preventive and therapeutic strategies. This special issue covers novel nutritional, molecular, and physiological aspects related to these metabolic diseases. Some of these papers emerge from the lectures of the 19th Conference on Trans-Pyrenean Investigations in Obesity and Diabetes, organized by the University of Zaragoza and celebrated in the town of Jaca (Spain) on 17-18th October 2022, and have been prepared in collaboration between different groups of the network. Many lectures were focused on the preventive role of specific fatty acids, dietary phenolic compounds and other phytochemicals against metabolic disorders. Consequently, we encouraged submission of original research in this field for this special issue.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"599-601"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep deprivation induced fat accumulation in the visceral white adipose tissue by suppressing SIRT1/FOXO1/ATGL pathway activation.","authors":"Wei Wang, Kun Liu, Huan Xu, Chongchong Zhang, Yifan Zhang, Mengnan Ding, Chen Xing, Xin Huang, Qing Wen, Chunfeng Lu, Lun Song","doi":"10.1007/s13105-024-01024-z","DOIUrl":"10.1007/s13105-024-01024-z","url":null,"abstract":"<p><p>Sleep is critical for maintaining overall health. Insufficient sleep duration and poor sleep quality are associated with various physical and mental health risks and chronic diseases. To date, plenty of epidemiological research has shown that sleep disorders are associated with the risk of obesity, which is usually featured by the expansion of adipose tissue. However, the underlying mechanism of increased fat accumulation upon sleep disorders remains unclear. Here we demonstrated that sleep deprivation (SD) caused triglycerides (TG) accumulation in the visceral white adipose tissue (vWAT), accompanied by a remarkable decrease in the expression of adipose triglyceride lipase (ATGL) and other two rate-limiting lipolytic enzymes. Due to the key role of ATGL in initiating and controlling lipolysis, we focused on investigating the signaling pathway leading to attenuated ATGL expression in vWAT upon SD in the following study. We observed that ATGL downregulation resulted from the suppression of ATGL transcription, which was mediated by the reduction of the transcriptional factor FOXO1 and its upstream regulator SIRT1 expression in vWAT after SD. Furthermore, impairment of SIRT1/FOXO1/ATGL pathway activation and lipolysis induced by SIRT1 inhibitor EX527 in the 3 T3-L1 adipocytes were efficiently rescued by the SIRT1 activator resveratrol. Most notably, resveratrol administration in SD mice revitalized the SIRT1/FOXO1/ATGL pathway activation and lipid mobilization in vWAT. These findings suggest that targeting the SIRT1/FOXO1/ATGL pathway may offer a promising strategy to mitigate fat accumulation in vWAT and reduce obesity risk associated with sleep disorders.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"561-572"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio Quesada-Vázquez, Itziar Eseberri, Francisco Les, Patricia Pérez-Matute, María Herranz-López, Claude Atgié, Marta Lopez-Yus, Paula Aranaz, José A Oteo, Xavier Escoté, Silvia Lorente-Cebrian, Enrique Roche, Arnaud Courtois, Víctor López, María Puy Portillo, Fermin I Milagro, Christian Carpéné
{"title":"Polyphenols and metabolism: from present knowledge to future challenges.","authors":"Sergio Quesada-Vázquez, Itziar Eseberri, Francisco Les, Patricia Pérez-Matute, María Herranz-López, Claude Atgié, Marta Lopez-Yus, Paula Aranaz, José A Oteo, Xavier Escoté, Silvia Lorente-Cebrian, Enrique Roche, Arnaud Courtois, Víctor López, María Puy Portillo, Fermin I Milagro, Christian Carpéné","doi":"10.1007/s13105-024-01046-7","DOIUrl":"10.1007/s13105-024-01046-7","url":null,"abstract":"<p><p>A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"603-625"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Mogna-Peláez, Ana Romo-Hualde, José I Riezu-Boj, Fermin I Milagro, David Muñoz-Prieto, José I Herrero, Mariana Elorz, Alberto Benito-Boillos, J Ignacio Monreal, Josep A Tur, Alfredo Martínez, Itziar Abete, M Angeles Zulet
{"title":"Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease.","authors":"Paola Mogna-Peláez, Ana Romo-Hualde, José I Riezu-Boj, Fermin I Milagro, David Muñoz-Prieto, José I Herrero, Mariana Elorz, Alberto Benito-Boillos, J Ignacio Monreal, Josep A Tur, Alfredo Martínez, Itziar Abete, M Angeles Zulet","doi":"10.1007/s13105-023-00998-6","DOIUrl":"10.1007/s13105-023-00998-6","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world. New non-invasive diagnostic tools are needed to promptly treat this disease and avoid its complications. This study aimed to find key metabolites and related variables that could be used to predict and diagnose NAFLD. Ninety-eight subjects with NAFLD and 45 controls from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. NAFLD was diagnosed and graded by ultrasound and classified into two groups: 0 (controls) and ≥ 1 (NAFLD). Hepatic status was additionally assessed through magnetic resonance imaging (MRI), elastography, and determination of transaminases. Anthropometry, body composition (DXA), biochemical parameters, and lifestyle factors were evaluated as well. Non-targeted metabolomics of serum was performed with high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). Isoliquiritigenin (ISO) had the strongest association with NAFLD out of the determinant metabolites. Individuals with higher concentrations of ISO had healthier metabolic and hepatic status and were less likely to have NAFLD (OR 0.13). Receiver operating characteristic (ROC) curves demonstrated the predictive power of ISO in panel combination with other NAFLD and IR-related variables, such as visceral adipose tissue (VAT) (AUROC 0.972), adiponectin (AUROC 0.917), plasmatic glucose (AUROC 0.817), and CK18-M30 (AUROC 0.810). Individuals with lower levels of ISO have from 71 to 82% more risk of presenting NAFLD compared to individuals with higher levels. Metabolites such as ISO, in combination with visceral adipose tissue, IR, and related markers, constitute a potential non-invasive tool to predict and diagnose NAFLD.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"639-653"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138299318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang
{"title":"TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.","authors":"Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang","doi":"10.1007/s13105-024-01018-x","DOIUrl":"10.1007/s13105-024-01018-x","url":null,"abstract":"<p><p>Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE<sup>-/-</sup>) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE<sup>-/-</sup> mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"523-539"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines.","authors":"Monika Adamowicz, Joanna Abramczyk, Ewa Kilanczyk, Piotr Milkiewicz, Alicja Łaba, Malgorzata Milkiewicz, Agnieszka Kempinska-Podhorodecka","doi":"10.1007/s13105-024-01033-y","DOIUrl":"10.1007/s13105-024-01033-y","url":null,"abstract":"<p><p>5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug's chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA's prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"573-583"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}