Xuefei Chen, Yanjun Li, Jingbo Zhang, Wenhua Huang, Jie Su, Jing Zhang
{"title":"Lactate coordinated with exercise promoted the browning of inguinal white adipose tissue.","authors":"Xuefei Chen, Yanjun Li, Jingbo Zhang, Wenhua Huang, Jie Su, Jing Zhang","doi":"10.1007/s13105-023-01004-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate, an important exercise metabolite, induces white adipose tissue browning by upregulated uncoupling protein 1 (UCP1) expression. However, the function of lactate during browning of inguinal white adipose tissue (iWAT) caused by exercise is unclear. Here, we considered lactate as an exercise supplement and investigated the effects of chronic pre-exercise lactate administration on energy metabolism and adipose tissue browning. C57B/L6 male mice (5 weeks of age) were divided into six groups. We evaluated the changes in blood lactate levels in each group of mice after the intervention. Energy expenditure was measured after the intervention immediately by indirect calorimetry. The marker protein levels and gene expressions were determined by western-blot and quantitative real-time PCR. HIIT significantly decreased adipose tissue weight while increased energy expenditure and the expression of UCP1 in iWAT; however, these regulations were inhibited in the DCA+HIIT group. Compared with the MICT and LAC groups, long-term lactate injection before MICT led to lower WAT weight to body weight ratios and higher energy expenditure in mice. Furthermore, the marker genes of browning in iWAT, such as Ucp1 and Pparγ, were significantly increased in the LAC+MICT group than in the other groups, and the expression of monocarboxylate transporter-1 (Mct1) mRNA was also significantly increased. Lactate was involved in exercise-mediated browning of iWAT, and its mechanism might be the increased of lactate transport through MCT1 or PPARγ upregulation induced by exercise. These findings suggest exogenous lactate may be a new exercise supplement to regulate metabolism.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"303-315"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-023-01004-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactate, an important exercise metabolite, induces white adipose tissue browning by upregulated uncoupling protein 1 (UCP1) expression. However, the function of lactate during browning of inguinal white adipose tissue (iWAT) caused by exercise is unclear. Here, we considered lactate as an exercise supplement and investigated the effects of chronic pre-exercise lactate administration on energy metabolism and adipose tissue browning. C57B/L6 male mice (5 weeks of age) were divided into six groups. We evaluated the changes in blood lactate levels in each group of mice after the intervention. Energy expenditure was measured after the intervention immediately by indirect calorimetry. The marker protein levels and gene expressions were determined by western-blot and quantitative real-time PCR. HIIT significantly decreased adipose tissue weight while increased energy expenditure and the expression of UCP1 in iWAT; however, these regulations were inhibited in the DCA+HIIT group. Compared with the MICT and LAC groups, long-term lactate injection before MICT led to lower WAT weight to body weight ratios and higher energy expenditure in mice. Furthermore, the marker genes of browning in iWAT, such as Ucp1 and Pparγ, were significantly increased in the LAC+MICT group than in the other groups, and the expression of monocarboxylate transporter-1 (Mct1) mRNA was also significantly increased. Lactate was involved in exercise-mediated browning of iWAT, and its mechanism might be the increased of lactate transport through MCT1 or PPARγ upregulation induced by exercise. These findings suggest exogenous lactate may be a new exercise supplement to regulate metabolism.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.