Juan Wan, Chunfang Cheng, Xiaonuo Li, Yuanjie Zhu, Hu Su, Yanchun Gong, Kaizhi Ding, Xiaofei Gao, Caixia Dang, Guoyin Li, Wei Jiang, Li-Hua Yao
{"title":"Lactate ameliorates palmitate-induced impairment of differentiative capacity in C2C12 cells through the activation of voltage-gated calcium channels.","authors":"Juan Wan, Chunfang Cheng, Xiaonuo Li, Yuanjie Zhu, Hu Su, Yanchun Gong, Kaizhi Ding, Xiaofei Gao, Caixia Dang, Guoyin Li, Wei Jiang, Li-Hua Yao","doi":"10.1007/s13105-024-01009-y","DOIUrl":null,"url":null,"abstract":"<p><p>Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of skeletal muscle regeneration dysfunction. This study aimed to examine the effects and mechanisms of lactate (Lac) treatment on PA-induced impairment of C2C12 cell differentiation capacity. Furthermore, the involvement of voltage-gated calcium channels in this context was examined. In this study, Lac could improve the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG. In addition, Lac increases the inward flow of Ca<sup>2+</sup>, and promotes the depolarization of the cell membrane potential, thereby activating voltage-gated calcium channels during C2C12 cell differentiation. The enchancement of Lac on myoblast differentiative capacity was abolished after the addition of efonidipine (voltage-gated calcium channel inhibitors). Therefore, voltage-gated calcium channels play an important role in improving PA-induced skeletal muscle regeneration disorders by exercising blood Lac. Our study showed that Lac could rescue the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG through the activation of voltage-gated calcium channels.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"349-362"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01009-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of skeletal muscle regeneration dysfunction. This study aimed to examine the effects and mechanisms of lactate (Lac) treatment on PA-induced impairment of C2C12 cell differentiation capacity. Furthermore, the involvement of voltage-gated calcium channels in this context was examined. In this study, Lac could improve the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG. In addition, Lac increases the inward flow of Ca2+, and promotes the depolarization of the cell membrane potential, thereby activating voltage-gated calcium channels during C2C12 cell differentiation. The enchancement of Lac on myoblast differentiative capacity was abolished after the addition of efonidipine (voltage-gated calcium channel inhibitors). Therefore, voltage-gated calcium channels play an important role in improving PA-induced skeletal muscle regeneration disorders by exercising blood Lac. Our study showed that Lac could rescue the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG through the activation of voltage-gated calcium channels.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.