Fabrice Requier, Fabian Nürnberger, Sandra V. Rojas-Nossa, Quentin Rome
{"title":"Spatial distribution of Vespa velutina-mediated beekeeping risk in France and Germany","authors":"Fabrice Requier, Fabian Nürnberger, Sandra V. Rojas-Nossa, Quentin Rome","doi":"10.1007/s10340-024-01782-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01782-1","url":null,"abstract":"<p>The Yellow-legged hornet (<i>Vespa velutina nigrithorax</i>) was accidentally introduced into south-western of France in 2004 and rapidly spread throughout France and neighbouring countries. This insect predator hunts honey bees leading to a hornet-mediated beekeeping risk (HBR) with potential mortality of honey bee colonies and important economic costs. However, the spatial distribution of HBR is not yet assessed and is urgently required to formulate suitable management plans in Western Europe. We conducted a two-year citizen science survey in France and Germany to assess the spatial distribution of (1) the hornet and (2) HBR, and to (3) determine the environmental factors involved. A total of 1678 beekeepers participated in the survey. As expected, the hornet was established throughout the French territory, and was mainly detected near the French border in Germany. We found that HBR was substantially lower in Germany than in France. Temperature had a positive effect on both hornet presence and HBR, whereas distance to the introduction point had a negative effect in both France and Germany. These results suggest that the impact of <i>V. velutina</i> on beekeeping is not homogenous across the invasion range and could be reduced on the eastern front due to the continental climate. Taking into account the spatial variability of HBR could help to formulate regionally adapted management plans to limit the impact of <i>V. velutina</i> on biodiversity, human health and economic sectors.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"21 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiran Jonathan Horrocks, Jinping Zhang, Tim Haye, M. Lukas Seehausen, Ramona Maggini, Xiaoqing Xian, Juhong Chen, Francesco Nugnes, Jana Collatz, Angela Gruber, Tara D. Gariepy
{"title":"Biology, impact, management and potential distribution of Aromia bungii, a major threat to fruit crops around the world","authors":"Kiran Jonathan Horrocks, Jinping Zhang, Tim Haye, M. Lukas Seehausen, Ramona Maggini, Xiaoqing Xian, Juhong Chen, Francesco Nugnes, Jana Collatz, Angela Gruber, Tara D. Gariepy","doi":"10.1007/s10340-024-01767-0","DOIUrl":"https://doi.org/10.1007/s10340-024-01767-0","url":null,"abstract":"<p><i>Aromia bungii</i> Faldermann (Coleoptera: Cerambycidae) is an emerging invasive pest of economically important <i>Prunus</i> species that is native to China, Mongolia, the Russian Far East, Korea, and Vietnam. It was recently introduced to Japan, Germany, and Italy, where it is spreading and damaging crops and ornamental trees. It exhibits an adaptable lifecycle, a high reproductive output, and the larvae live concealed under the bark of infested trees, which are traits that promote its invasiveness. Detection and monitoring of <i>A. bungii</i> currently rely upon visual identification of infested trees that are usually already damaged, which is inefficient and not target-specific. Current control methods rely primarily upon the labour-intensive physical removal of infested trees. Although native parasitoid natural enemies of <i>A. bungii</i> provide control in Chinese orchards, none are appropriate for classical biological control in invaded areas due to biosafety concerns surrounding their broad host ranges. However, entomopathogenic fungi and nematodes may provide viable options for biological control in invaded ranges. Recent advancements in semiochemical baited traps may provide sustainable, target-specific, and efficacious methods to monitor and control <i>A. bungii</i>. There remains much to learn about the biology and control of <i>A. bungii</i>, and continued advancements in the study of sustainable control tools are needed for the management of this emerging pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"22 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asim Renyard, Kennedy Hoven, Charlotte Pinard, Gerhard Gries
{"title":"New lethal liquid bait for control of pest ants","authors":"Asim Renyard, Kennedy Hoven, Charlotte Pinard, Gerhard Gries","doi":"10.1007/s10340-024-01773-2","DOIUrl":"https://doi.org/10.1007/s10340-024-01773-2","url":null,"abstract":"<p>An aqueous ant bait consisting of sucrose (4.55% w/v), essential amino acids (EAAs, 1%), and water is known to be highly appealing to multiple ant species throughout the foraging season. Here, we tested whether this bait, combined with boric acid as the lethal agent, has potential for control of pest ants. Specifically, we: (1) assessed bait lethality to diverse species of ants (European fire ants, <i>Myrmica rubra,</i> western carpenter ants, <i>Camponotus modoc</i>, thatching ants, <i>Formica oreas</i>); (2) tested the effect of boric acid concentration on mortality of <i>M. rubra</i> workers and colonies; (3) compared consumption, and demise timeline, of lethal liquid baits and lethal gel baits; and (4) investigated whether lethal liquid baits reduce the size of <i>M. rubra</i> colonies. In laboratory experiments, the bait induced rapid worker mortality (< 22 days) in all three species of ants tested. Increasing the concentration of boric acid from 1% to 5.4% accelerated the demise of only worker ants, but not queen ants, in <i>M. rubra</i> colonies, indicating that 1% boric acid is sufficiently lethal. Worker ants of <i>M. rubra</i> strongly preferred liquid baits to gel baits of identical nutrient composition, with the former bait accelerating worker demise. In a field experiment in a public park heavily infested with <i>M. rubra</i>, the 12 treatment colonies provided with a lethal liquid bait (4.55% sucrose; 1% EAAs; 1% boric acid) over 114 days significantly declined, whereas the 12 control colonies provided with the corresponding non-lethal bait did not. The bait, with appropriately adapted bait deployment protocol, should be tested for control of other pest ants, particularly those that preferentially feed on liquid foods.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"33 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura A. Reeves, Michael P. D. Garratt, Michelle T. Fountain, Deepa Senapathi
{"title":"A whole ecosystem approach to pear psyllid (Cacopsylla pyri) management in a changing climate","authors":"Laura A. Reeves, Michael P. D. Garratt, Michelle T. Fountain, Deepa Senapathi","doi":"10.1007/s10340-024-01772-3","DOIUrl":"https://doi.org/10.1007/s10340-024-01772-3","url":null,"abstract":"<p>Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (<i>Cacopsylla pyri</i> Linnaeus) within pear (<i>Pyrus communis</i> L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in <i>C. pyri</i> management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of <i>C. pyri</i> as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"54 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Substrate-borne vibrations produced during the interaction with natural enemies alter aphids probing behavior","authors":"Caterina Zippari, Rachele Nieri, Zeinab Hamouche, Abderrahmane Boucherf, Giovanni Tamburini, Gianfranco Anfora, Vincenzo Verrastro, Valerio Mazzoni, Daniele Cornara","doi":"10.1007/s10340-024-01761-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01761-6","url":null,"abstract":"<p>The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid <i>Myzus persicae</i> and its antagonists, the parasitoid wasp <i>Aphidius colemani</i> and the ladybug <i>Adalia bipunctata.</i> Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"25 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matěj Novák, Roman Pavela, Eleonora Spinozzi, Marta Ferrati, Riccardo Petrelli, Filippo Maggi, Renato Ricciardi, Giovanni Benelli
{"title":"Lethal and sublethal effects of carlina oxide on the aphid Metopolophium dirhodum and its non-target impact on two biological control agents","authors":"Matěj Novák, Roman Pavela, Eleonora Spinozzi, Marta Ferrati, Riccardo Petrelli, Filippo Maggi, Renato Ricciardi, Giovanni Benelli","doi":"10.1007/s10340-024-01768-z","DOIUrl":"https://doi.org/10.1007/s10340-024-01768-z","url":null,"abstract":"<p>This study was designed to investigate the acute toxicity (mortality) and sublethal effects (fertility and potential natality) of carlina oxide, the main constituent of <i>Carlina acaulis</i> essential oil (EO), against adults of <i>Metopolophium dirhodum</i> (Walker) (Hemiptera: Aphididae). Moreover, its toxicity was evaluated against two aphid natural enemies, i.e., <i>Aphidoletes aphidimyza</i> Rondani (Diptera: Cecidomyiidae) and <i>Chrysoperla carnea</i> Stephens (Neuroptera: Chrysopidae). The highest tested concentration (3.0 mL L<sup>−1</sup>) resulted in 96.7% mortality of adults of the target pest, highlighting that this concentration of carlina oxide had a similar effectiveness as the positive control we used. Furthermore, probit analysis allowed the estimation of a LC<sub>50</sub> of 1.06 mL L<sup>−1</sup> and a LC<sub>90</sub> of 2.58 mL L<sup>−1</sup> for the target pest, which resulted in a much higher mortality rate than that found on natural enemies, i.e., <i>A. aphidimyza</i> (6.7 ± 4.7% ± SD when exposed to the aphid LC<sub>90</sub>) and <i>C. carnea</i> (7.0 ± 5.5% ± SD when exposed to the aphid LC<sub>90</sub>), showing the limited non-target impact of carlina oxide. The use of LC<sub>30</sub> and LC<sub>50</sub> of this compound allowed the fertility inhibition of the target pest by 35.68 ± 6.21% and 23.66 ± 10.58%, respectively, and potential natality inhibition of the target pest by 52.78 ± 4.48% and 59.69 ± 5.60%, respectively. Of note, carlina oxide showed excellent insecticidal activity against <i>M. dirhodum,</i> comparable to the commercial insecticide considered. Overall, the low toxicity of carlina oxide toward <i>A. aphidimyza</i> and <i>C. carnea</i> makes it a safe compound for non-target organisms as well as suitable for developing a green insecticide for the management of <i>M. dirhodum</i> and perhaps other insects of agricultural or medical and veterinary interest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diurnal temperature fluctuations improve predictions of developmental rates in the spruce bark beetle Ips typographus","authors":"Sven Hofmann, Martin Schebeck, Markus Kautz","doi":"10.1007/s10340-024-01758-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01758-1","url":null,"abstract":"<p>The European spruce bark beetle <i>Ips typographus</i> is a widespread pest in Norway spruce-dominated forests in Eurasia. Predicting its phenology and voltinism is crucial to plan forest management measures and to mitigate mass outbreaks. Current phenology models are based on constant temperatures inferred from laboratory experiments; however, insect life cycles under natural conditions are rather driven by diurnal and seasonal temperature fluctuations. Therefore, phenology models based on fluctuating temperatures would reflect field conditions more realistically and might thus improve model predictions. In a laboratory experiment, we investigated the development of <i>I. typographus</i>, applying mean temperatures between 3 and 35 °C and diurnal temperature oscillations of up to ± 15 °C. Subsequently, we calibrated developmental rate models and applied them to climate data, in order to assess the effect of temperature fluctuations on voltinism under field conditions. Our results showed that diurnal temperature oscillations significantly affected developmental rates. Compared to constant temperatures, development was faster at temperature oscillations falling below the lower developmental threshold, and slower at temperature oscillations exceeding the developmental optimum. Furthermore, short exposures to suboptimal temperatures affected <i>I. typographus</i> less than expected from constant conditions. Natural temperature fluctuations thus accelerate development under cool, shaded conditions, whilst slowing it under hot, sun-exposed conditions, thereby ultimately affecting voltinism. Our findings highlight the importance to account for diurnal temperature fluctuations for more accurate predictions of developmental rates of <i>I. typographus</i> in natural thermal environments, and provide the fundament for improving current phenology models to support effective bark beetle management in a warming climate.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"21 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sugarcane borers: species, distribution, damage and management options","authors":"Ao-Mei Li, Zhong-Liang Chen, Fen Liao, Yong Zhao, Cui-Xian Qin, Miao Wang, You-Qiang Pan, Shao-Long Wei, Dong-Liang Huang","doi":"10.1007/s10340-024-01750-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01750-9","url":null,"abstract":"<p>Lepidopteran borers stand out as the most destructive pests in sugarcane, leading to reductions in stalk weight, juice quality and sugar recovery. Presently, integrated pest management (IPM) systems are utilized for sugarcane borer management, employing diverse methods encompassing cropping system, chemical pesticides, behavioral manipulation, biological agents and the selection of resistant varieties. However, the effectiveness of this strategy remains controversial due to concerns about harmful residues, formulation limitations, environmental variability, labor shortages and increased input costs. Currently, multiple lines of transgenic sugarcane expressing insecticidal genes from the bacterium <i>Bacillus thuringiensis</i> (Bt) have been developed globally, offering the prospect of increases production with reduced pesticides application, thereby eliminating the negative effect of IPM. In Brazil, the first genetically modified sugarcane cultivars resistant to the sugarcane borer have been approved and released for commercial cultivation, shedding a bright light on a viable solution for sugarcane borers. This paper reviews borer species and distribution, the significant damage caused by sugarcane borers, current control approaches and the future effective control strategies. Additionally, this work provides comprehensive understanding on Bt sugarcane, serving as an additional tool to complement conventional sugarcane borers control resistance programs.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"158 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus","authors":"Mustapha Touray, Harun Cimen, Edna Bode, Helge B. Bode, Selcuk Hazir","doi":"10.1007/s10340-024-01760-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01760-7","url":null,"abstract":"<p>Viral diseases like yellow fever, dengue, and Zika have an alarming impact on public health. These diseases can be transmitted by <i>Aedes</i> mosquito species, such as Ae. albopictus, which is now found in many countries outside its original range. <i>Xenorhabdus</i> and <i>Photorhabdus</i> spp. are enteric bacterial symbionts of insect-preying nematodes and are known to produce an array of natural products with various activities including larvicidal activity. In this study, the effects of natural products produced by four <i>Xenorhabdus</i> and one <i>Photorhabdus</i> bacteria on the ovipositional behavior of <i>Ae. albopictus</i> mosquitoes were assessed. Utilizing a binary choice assay in insect cages, gravid female mosquitoes were presented with two oviposition cups containing water supplemented with varying concentrations of bacterial supernatants (50–1% concentrations) versus control medium. After 72 h, the eggs deposited on filter papers were counted. The oviposition attractant index (OAI) feature of the bacterial supernatant was evaluated using the number of eggs laid in the cups. Notably, all tested supernatants exhibited concentration-dependent deterrence of oviposition. <i>Xenorhabdus cabanillasii</i> displayed the strongest deterrent effect, inhibiting egg-laying at 50–5% concentrations (OAI: − 0.87 to − 0.35), followed by <i>X. nematophila</i> (50–10%, OAI: − 0.82 to − 0.52). <i>Xenorhabdus szentirmaii, X. doucetiae,</i> and <i>P. kayaii</i> showed significant deterrence at ≥ 20% concentrations. Using promoter exchange mutants generated by the easyPACId approach, fabclavine from <i>X. szentirmaii</i> was identified as the bioactive compound with evident deterrent effects. Such deterrents targeting egg-laying could be valuable for controlling populations by disrupting their breeding in suitable habitats.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function","authors":"Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang","doi":"10.1007/s10340-024-01769-y","DOIUrl":"https://doi.org/10.1007/s10340-024-01769-y","url":null,"abstract":"<p><i>Gelsemium elegans</i> Benth. (<i>Loganiaceae</i>), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to <i>G. elegans</i> extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of <i>G. elegans</i> extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, <i>G. elegans</i> extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of <i>G. elegans</i> extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of <i>G. elegans</i> and supported the development of eco-friendly insecticides for red fire ants.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"70 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}