Journal of Pest Science最新文献

筛选
英文 中文
Clover in vineyards, a potential trap plant for the mealybug Pseudococcus calceolariae—a vector of GLRaV-3 to grapevines but not clover species 葡萄园中的三叶草是蚧壳虫 Pseudococcus calceolaria 的潜在诱捕植物--GLRaV-3 在葡萄藤上的载体,但不包括三叶草物种
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-07-05 DOI: 10.1007/s10340-024-01807-9
Rebecca Gough, Kar Mun Chooi, Manoharie Sandanayaka, Vicky Davis, Duncan Hedderley, Tara Taylor, Daniel Cohen, Cecilia A. Prator, Rodrigo P. P. Almeida, Vaughn A. Bell, Robin M. MacDiarmid
{"title":"Clover in vineyards, a potential trap plant for the mealybug Pseudococcus calceolariae—a vector of GLRaV-3 to grapevines but not clover species","authors":"Rebecca Gough, Kar Mun Chooi, Manoharie Sandanayaka, Vicky Davis, Duncan Hedderley, Tara Taylor, Daniel Cohen, Cecilia A. Prator, Rodrigo P. P. Almeida, Vaughn A. Bell, Robin M. MacDiarmid","doi":"10.1007/s10340-024-01807-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01807-9","url":null,"abstract":"<p>Grapevine leafroll disease (GLD) affects grapevines worldwide. The primary causal agent of GLD is grapevine leafroll-associated virus 3 (GLRaV-3), which spreads to uninfected grapevines via mealybugs and soft-scale insects. <i>Pseudococcus calceolariae</i> (Hemiptera: Pseudococcidae) is a mealybug vector of GLRaV-3 in New Zealand. <i>P. calceolariae</i> also colonizes clovers (<i>Trifolium</i> spp.) growing naturally as vineyard ground cover. Separating mealybug from GLRaV-3 grapevine host could be enhanced by a trap plant: an alternative host attractive to and retentive of the target pest. We evaluated the association between <i>P. calceolariae</i> and ‘Grasslands Huia’ white clover (GHWC). GHWC seed was sown under grapevines in a commercial vineyard (14 × 0.4 ha plots); the control was under-vine herbicide use (7 × 0.4 ha plots, where only few <i>Trifolium</i> spp. plants grew). After 2 years, GHWC cover peaked at 40% mealybug infestation in 2019. From 2018 to 2021, <i>P. calceolariae</i> detection and abundance on GHWC was significantly higher than plants from the control plots. There was no treatment effect for mealybug infestation of grapevine leaves nor of GLRaV-3 incidence, independent of vintage. A glasshouse trial found no transmission of GLRaV-3 by <i>P. calceolariae</i> to any of 256 plants among five clover cultivars tested (<i>Trifolium</i> spp.), including GHWC; mealybug transmitted GLRaV-3 to 35 of 107 <i>Nicotiana benthamiana</i> plants. The results showed that in the 5-year period, added GHWC did not decouple <i>P. calceolariae</i> from the grapevine to reduce GLRaV-3 incidence, but rapid colonization of GHWC by mealybug and the lack of GLRaV-3 transmission to GHWC are encouraging. Further evaluation is needed to assess whether plant biodiversity can benefit a GLRaV-3 ecological management objective.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"67 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predatory mites as potential biological control agents for tomato russet mite and powdery mildew on tomato 捕食螨是番茄赤粉螨和白粉病的潜在生物控制剂
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-28 DOI: 10.1007/s10340-024-01802-0
Ítalo Marcossi, Leonardo S. Francesco, Morgana M. Fonseca, Angelo Pallini, Thomas Groot, Raf De Vis, Arne Janssen
{"title":"Predatory mites as potential biological control agents for tomato russet mite and powdery mildew on tomato","authors":"Ítalo Marcossi, Leonardo S. Francesco, Morgana M. Fonseca, Angelo Pallini, Thomas Groot, Raf De Vis, Arne Janssen","doi":"10.1007/s10340-024-01802-0","DOIUrl":"https://doi.org/10.1007/s10340-024-01802-0","url":null,"abstract":"<p>Tomato plants are attacked by numerous pests and diseases, including the tomato russet mite <i>Aculops lycopersici</i> and powdery mildew, <i>Oidium neolycopersici</i>. Natural enemies of tomato pests are often hindered by the tomato trichomes, while russet mites live under and among these leaf hairs and are therefore protected from these enemies. To find natural enemies that are adapted to tomato and its trichomes, we collected a predatory mite, <i>Amblyseius herbicolus</i>, and an iolinid mite, cf. <i>Homeopronematus anconai</i> sp. nov., from tomato plants in the field. We investigated their potential as biological control agents for pests in this crop. We show that both predators were able to feed and reproduce on russet mites. Subsequently, we show that the iolinid effectively controlled tomato russet mites and powdery mildew on isolated tomato plants, whereas <i>A. herbicolus</i> disappeared from the plants. Altogether, our results show that cf. <i>H. anconai</i> sp. nov. is an efficient biocontrol agent of two key pests on tomato plants. Our results thus contribute to the recent trend of using predators that are effective in controlling both a pest and a pathogen, a promising new strategy for biological crop protection.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"88 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay of intercropping, wildflower strips and weeds in conservation biological control and productivity 间作、野花带和杂草在保护生物控制和生产力方面的相互作用
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-24 DOI: 10.1007/s10340-024-01801-1
Séverin Hatt, Thomas F. Döring
{"title":"The interplay of intercropping, wildflower strips and weeds in conservation biological control and productivity","authors":"Séverin Hatt, Thomas F. Döring","doi":"10.1007/s10340-024-01801-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01801-1","url":null,"abstract":"<p>Different diversification practices have the potential to reduce pests and therefore pesticide use. Yet, their integration at the agroecosystem level and the evaluation of their multifunctional effects remain limited. Through a two-year field experiment conducted in Germany, we tested whether associating intercropping (faba bean-wheat, followed by breadseed poppy-barley) with pluriannual wildflower strips strengthens the biological regulation of aphid pests and weeds, and enhances cropping system productivity. The contribution of flowering weeds to conservation biological control was also analysed. Aphid but also predator colonization and predation rates on bean and poppy were consistently lower in intercropping compared to sole cropping. Wildflower strips enhanced aphid predation in bean-wheat intercropping, and further reduced aphid colonization at 10 m distance but not at 20 m in poppy-barley intercropping. Weed biomass was consistently reduced in intercropping compared to sole cropping bean and poppy, and did not significantly affect bean and poppy yields in intercropping. The cover of one flowering weed species, <i>Matricaria recutita</i>, was negatively correlated to aphid colonization and positively correlated to predation rate. <i>Matricaria recutita</i> flowers were also visited more often by predatory hoverflies in plots adjacent to wildflower strips. Finally, land equivalent ratio was consistently higher than 1, and the highest in bean-wheat intercropping associated to wildflower strips. The study demonstrates the benefits of associating wildflower strips to intercropping to strengthen biological control and cropping system productivity. Flowering weeds, maintained at an acceptable level through intercropping, turn out to be relevant functional biodiversity in interacting with wildflower strips for conservation biological control.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"43 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bringing light into the dark—plant electrophysiological monitoring of root knot nematode infestation and real-time nematicide efficacy 将光线引入黑暗--根结线虫侵扰和实时杀线虫药效的植物电生理监测
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-19 DOI: 10.1007/s10340-024-01798-7
Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz
{"title":"Bringing light into the dark—plant electrophysiological monitoring of root knot nematode infestation and real-time nematicide efficacy","authors":"Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz","doi":"10.1007/s10340-024-01798-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01798-7","url":null,"abstract":"<p>This study investigated the infestation of tomato plants by the plant-parasitic nematode, <i>M. incognita</i>, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"44 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought aggravates plant stress by favouring aphids and weakening indirect defense in a sugar beet tritrophic system 在甜菜三营养系统中,干旱有利于蚜虫并削弱间接防御,从而加剧植物的应激反应
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-19 DOI: 10.1007/s10340-024-01799-6
Shahinoor Rahman, Michael Rostás, Ilka Vosteen
{"title":"Drought aggravates plant stress by favouring aphids and weakening indirect defense in a sugar beet tritrophic system","authors":"Shahinoor Rahman, Michael Rostás, Ilka Vosteen","doi":"10.1007/s10340-024-01799-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01799-6","url":null,"abstract":"<p>Climate change leads to more frequent droughts that may alter multitrophic networks in agroecosystems by changing bottom-up and top-down effects on herbivorous insects. Yet, how bottom-up effects of drought alter tritrophic interactions remains poorly understood. This study investigated two intensities of drought stress in the tritrophic system consisting of sugar beet (<i>Beta vulgaris</i>), an aphid (<i>Aphis fabae</i>), and its parasitoid (<i>Aphidius colemani</i>). We thoroughly investigated each trophic level, examining the performance of plants, pest insects, and parasitoids, as well as the attraction of parasitoids to herbivore-induced plant volatiles (HIPVs). Drought stress negatively affected plant growth but benefited <i>A. fabae,</i> leading to faster development and a higher reproduction rate. Drought-stressed plants also emitted less plant volatiles, which resulted in reduced attraction of <i>A. colemani</i> to aphid-infested plants. Drought indirectly affected parasitoid performance, as evidenced by lower emergence rates and production of fewer females, although mummification rates were higher on drought-stressed plants. Reduced parasitoid attraction and performance on drought-stressed plants may exert lower top-down pressure on aphid populations. Combined with increased aphid performance, this may facilitate aphid outbreaks, which could further weaken drought-stressed plants. Our findings highlight the need to study multiple trophic levels and emphasize the importance of incorporating HIPVs and parasitoid attraction when assessing combined abiotic and biotic stresses in crops.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"88 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-energy emulsification of Allium sativum essential oil boosts insecticidal activity against Planococcus citri with no risk to honeybees 薤白精油的高能乳化可增强对柠檬扁球菌的杀虫活性,且不会对蜜蜂造成风险
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-17 DOI: 10.1007/s10340-024-01800-2
Antonino Modafferi, Giulia Giunti, Alberto Urbaneja, Francesca Laudani, Ilaria Latella, Meritxell Pérez-Hedo, Michele Ricupero, Vincenzo Palmeri, Orlando Campolo
{"title":"High-energy emulsification of Allium sativum essential oil boosts insecticidal activity against Planococcus citri with no risk to honeybees","authors":"Antonino Modafferi, Giulia Giunti, Alberto Urbaneja, Francesca Laudani, Ilaria Latella, Meritxell Pérez-Hedo, Michele Ricupero, Vincenzo Palmeri, Orlando Campolo","doi":"10.1007/s10340-024-01800-2","DOIUrl":"https://doi.org/10.1007/s10340-024-01800-2","url":null,"abstract":"<p>The ecotoxicological consequences of synthetic pesticides have encouraged stakeholders to search for eco-friendly pest control tools, like essential oils (EOs). Nano-delivery systems (nanoparticles and nano-emulsions) seem ideal for developing EO-based biopesticides, although production processes should be standardized and implemented. In this study, nano-emulsions loaded with a high amount of <i>Allium sativum</i> L. EO (15%) were developed using different mixed bottom-up/top-down processes. Garlic EO was chemically analyzed by gas chromatography-mass spectrometry (GC-MS) and formulations were physically characterized using Dynamic Light Scattering (DLS) apparatus. The insecticidal activity against <i>Planococcus citri</i> Risso (Hemiptera: Pseudococcidae) and selectivity toward <i>Apis mellifera</i> L. (Hymenoptera: Apidae) worker bees was evaluated. Garlic EO was mainly composed of sulphur components (96.3%), with diallyl disulphide and diallyl trisulphide as the most abundant compounds (37.26% and 28.15%, respectively). Top-down processes could produce stable nano-emulsions with droplet size in the nanometric range (&lt; 200nm) and good polydispersity index (PDI &lt; 0.2). In contrast, the bottom-up emulsion was unstable, and its droplet size was around 500nm after 24 hours. High-energy emulsification processes significantly increased the residual toxicity of garlic EO against 3rd instar <i>P. citri</i> nymphs, whereas the developed formulations were harmless to <i>A. mellifera</i> workers in topical application. This study confirmed that the production process significantly affected the physical properties and efficacy against target pests. The lack of adverse impact on honeybees denotated the potential of these formulations as bioinsecticides in organic and/or IPM programs, although further extended ecotoxicological studies are necessary.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"72 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of alfalfa perimeter strips on Lygus lineolaris and beneficial arthropods in June-bearing strawberry fields 紫花苜蓿周缘带对六月草莓田中的线虫和有益节肢动物的影响
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-12 DOI: 10.1007/s10340-024-01795-w
Matthew C. Hetherington, Matthew Fox, Megan Johnson, Allison Lopina, Emma Mechelke, Morgan Weissner, Christelle Guédot
{"title":"Impact of alfalfa perimeter strips on Lygus lineolaris and beneficial arthropods in June-bearing strawberry fields","authors":"Matthew C. Hetherington, Matthew Fox, Megan Johnson, Allison Lopina, Emma Mechelke, Morgan Weissner, Christelle Guédot","doi":"10.1007/s10340-024-01795-w","DOIUrl":"https://doi.org/10.1007/s10340-024-01795-w","url":null,"abstract":"<p><i>Lygus lineolaris</i> Palisot de Beauvois (Hemiptera: <i>Miridae</i>) is the primary insect pest of strawberry in eastern and central North America. Strategies to minimize <i>L. lineolaris</i> colonization of strawberry at bloom and peak fruit susceptibility without impacting pollinator health must be developed. To this end, we examined the potential of alfalfa perimeter strips to reduce <i>L. lineolaris</i> populations in June-bearing strawberry fields. Over a three-year experiment, <i>L. lineolaris</i> densities and beneficial arthropod abundance were monitored in commercial strawberry fields with and without alfalfa perimeter strips. Alfalfa perimeter strips were found to concentrate <i>L. lineolaris</i> populations and led to a 36% reduction in <i>L. lineolaris</i> densities in adjacent strawberry plots compared to controls. When a protein immunomark-capture experiment was conducted to examine the extent of movement between the alfalfa strips and adjacent strawberry plots, it was determined that approximately three times as many <i>L. lineolaris</i> migrated from strawberry to alfalfa than vice versa. Moreover, adult females were overrepresented among immigrants to alfalfa, suggesting that alfalfa may be a preferred oviposition site for <i>L. lineolaris</i>. While the presence of alfalfa perimeter strips increased beneficial arthropod abundance and diversity in experimental plots overall, these increases were limited to the alfalfa itself, with little spillover into adjacent strawberry plots. These data suggest that preferential utilization of alfalfa by <i>L. lineolaris</i> underlies the observed population reductions and that alfalfa acts as a trap crop in June-bearing strawberries.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"11 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trichoderma metabolites 6-pentyl-α-pyrone and harzianic acid affect the reproduction and microbiome of Bactrocera oleae 毛霉代谢物 6-戊基-α-吡喃酮和哈茨酸影响油菜菌的繁殖和微生物群落
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-08 DOI: 10.1007/s10340-024-01796-9
Giovanni Jesu, Francesco Vinale, Matteo Lorito, Stefania Laudonia
{"title":"Trichoderma metabolites 6-pentyl-α-pyrone and harzianic acid affect the reproduction and microbiome of Bactrocera oleae","authors":"Giovanni Jesu, Francesco Vinale, Matteo Lorito, Stefania Laudonia","doi":"10.1007/s10340-024-01796-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01796-9","url":null,"abstract":"<p>Endosymbiosis is very common between bacteria and insects, and it has been deeply studied for over a century on model insects such as <i>Bactrocera oleae</i>, the key pest of the olives. It was demonstrated that “<i>Candidatus</i> Erwinia dacicola” is the main component of its midgut bacterial communities, acting a fundamental role in the fly’s nutrition process and thus on its fitness. In this study, <i>Trichoderma</i> secondary metabolites have been used to treat olive fruit fly in order to alter the “<i>Ca</i>. Erwinia dacicola” titer and to assess the subsequent effects on its host. The selected metabolites, 6-pentyl-α-pyrone and harzianic acid, directly affect the insect’s fitness also on the subsequent generation, but not always in a concentration-dependent manner. Aside from the direct effects, the treatments also showed a modification of the bacterial titer. Therefore, real-time qPCRs were carried out on wild individual flies highlighting natural variations of the symbiont presence and activity during the seasons. The data obtained suggest that bioactive fungal metabolites can be formulated for direct or indirect control strategies of <i>B. oleae</i> in integrated pest management programs.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"15 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential shortfalls of using entomopathogenic fungi for boosting the sterile insect technique to control the oriental fruit fly, Bactrocera dorsalis 利用昆虫病原真菌促进昆虫不育技术控制东方果蝇的潜在不足
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-01 DOI: 10.1007/s10340-024-01793-y
Samba Diop, Thierry Brévault, Fatime Dosso, Sohel Ahmad, Emilie Deletre, Simon Fellous, Anais Chailleux
{"title":"Potential shortfalls of using entomopathogenic fungi for boosting the sterile insect technique to control the oriental fruit fly, Bactrocera dorsalis","authors":"Samba Diop, Thierry Brévault, Fatime Dosso, Sohel Ahmad, Emilie Deletre, Simon Fellous, Anais Chailleux","doi":"10.1007/s10340-024-01793-y","DOIUrl":"https://doi.org/10.1007/s10340-024-01793-y","url":null,"abstract":"<p>Entomovectoring relies on the dissemination of biocides by insects to control plant pests and diseases. Current research aims at coupling entomovectoring with the Sterile Insect Technique (SIT). Such boosted-SIT is a promising technique to control the Oriental fruit fly, <i>Bactrocera dorsalis</i> (Hendel) (Diptera, Tephritidae), an invasive pest that dooms African and Asian fruit-producers and is invading Europe. Here, we investigated empirically the potential of boosting the SIT using spores of the entomopathogenic fungus, <i>Metarhizium anisopliae</i>. Laboratory bioassay confirmed the transmission potential of the fungus from inoculated males to males and females, with subsequent reductions in survival and fecundity. Inoculation, like sterility, nonetheless reduced male mating success. Semi-field tests (i.e., large outdoor cages) revealed greater costs of fungal inoculation on male competitivity than observed in the laboratory. Combined with effects of inoculation on male survival, these costs led to a lower reduction in female reproduction in the presence of inoculated sterile males compared to plain sterile males. As tested here, boosting the SIT with <i>M. anisoplae</i> spores to control <i>B. dorsalis</i> could reduce its efficacy. The encouraging transmission patterns, however, suggest that technical improvements may render the boosted-SIT effective in some, if not all, ecological contexts.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"45 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity and repellent activity of a carlina oxide nanoemulsion toward the South American tomato pinworm, Tuta absoluta 氧化卡利纳纳米乳液对南美番茄蛲虫 Tuta absoluta 的毒性和驱避活性
IF 4.8 1区 农林科学
Journal of Pest Science Pub Date : 2024-06-01 DOI: 10.1007/s10340-024-01785-y
Simona Tortorici, Valeria Zeni, Diego Romano Perinelli, Marta Ferrati, Eleonora Spinozzi, Filippo Maggi, Giovanni Benelli, Roberto Rizzo
{"title":"Toxicity and repellent activity of a carlina oxide nanoemulsion toward the South American tomato pinworm, Tuta absoluta","authors":"Simona Tortorici, Valeria Zeni, Diego Romano Perinelli, Marta Ferrati, Eleonora Spinozzi, Filippo Maggi, Giovanni Benelli, Roberto Rizzo","doi":"10.1007/s10340-024-01785-y","DOIUrl":"https://doi.org/10.1007/s10340-024-01785-y","url":null,"abstract":"<p>Plant essential oil (EO)-based insecticides represent a promising tool for Integrated Pest Management (IPM), though their formulation is limited by poor physicochemical properties. EO encapsulation into stable formulations, like nanoemulsions (NEs), could boost EO efficacy and stability. <i>Carlina acaulis</i> L. roots contain an EO recently studied for its excellent insecticidal activities, and chiefly composed of carlina oxide (&gt; 97%). Herein, we developed two carlina oxide NEs (0.25% and 0.5% w/w) through ultrasounds exposure and characterized them by dynamic light scattering (DLS). The NE insecticidal and repellent activities were tested on <i>Tuta absoluta</i> (Meyrick) (Lepidoptera: Gelechiidae) eggs, larvae, and adults. Nanoemulsions tested showed a monomodal size ditribution and the polydispersity index (PDI) indicaticating a low grade of polydispersity. The 0.25% (w/w) NE showed significant contact toxicity on <i>T. absoluta</i> eggs with high hatching inhibition. 11 days post-treatment. The highest larvicidal effect was observed in translaminar toxicity tests, with complete mortality after 24 h. The NE did not achieve significant oviposition deterrence. Overall, the tested green NE showed promising effectiveness as ovicide and larvicide on <i>T. absoluta</i>, highlighting the need of further research to shed light on its modes of action, as well as to evaluate lethal and sublethal effects on tomato biological control agents and pollinators.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信