Urban and agricultural areas under threat of the termite pest genus Heterotermes: insights from species distribution modelling and phylogeny

IF 4.1 1区 农林科学 Q1 ENTOMOLOGY
Edouard Duquesne, Denis Fournier
{"title":"Urban and agricultural areas under threat of the termite pest genus Heterotermes: insights from species distribution modelling and phylogeny","authors":"Edouard Duquesne, Denis Fournier","doi":"10.1007/s10340-025-01866-6","DOIUrl":null,"url":null,"abstract":"<p>Termites, particularly those of the genus <i>Heterotermes</i>, are significant pests impacting urban and agricultural environments worldwide. Despite their impact, the distribution of <i>Heterotermes</i> has been largely overlooked. Our study aims to predict the potential distribution of 15 <i>Heterotermes</i> species by integrating bioclimatic, land-use, connectivity, soil and elevation variables into species distribution models (SDMs). These models project habitat suitability under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5) for short-term (2021–2040), mid-term (2041–2060) and long-term (2061–2080) scenarios. Our results underscore the critical influence of temperature, connectivity and soil moisture on termite distribution, revealing potential expansions into new regions due to climate change. Most parts of the Neotropics and Australia could become suitable for at least one species. Our study also examines the efficacy of incorporating phylogenetic data into SDMs, demonstrating its enhanced reliability for predicting distributions of co-occurring species, though its effectiveness diminishes for geographically isolated ones. Future projections indicate significant range shifts due to increased urbanization, agriculture expansion and climate change. Neotropical species are likely to face habitat reductions, especially in South American forests, while several Australian and major structural pest species may expand their range. Currently, densely populated cities in the Neotropics, the south-western US, Australia and South Asia could be within the range of one to five <i>Heterotermes</i> species. In agricultural areas, Australia and the Neotropics—both heavily reliant on agriculture—are highly vulnerable, and this vulnerability is expected to worsen as more land is converted to agricultural use.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"10 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01866-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Termites, particularly those of the genus Heterotermes, are significant pests impacting urban and agricultural environments worldwide. Despite their impact, the distribution of Heterotermes has been largely overlooked. Our study aims to predict the potential distribution of 15 Heterotermes species by integrating bioclimatic, land-use, connectivity, soil and elevation variables into species distribution models (SDMs). These models project habitat suitability under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5) for short-term (2021–2040), mid-term (2041–2060) and long-term (2061–2080) scenarios. Our results underscore the critical influence of temperature, connectivity and soil moisture on termite distribution, revealing potential expansions into new regions due to climate change. Most parts of the Neotropics and Australia could become suitable for at least one species. Our study also examines the efficacy of incorporating phylogenetic data into SDMs, demonstrating its enhanced reliability for predicting distributions of co-occurring species, though its effectiveness diminishes for geographically isolated ones. Future projections indicate significant range shifts due to increased urbanization, agriculture expansion and climate change. Neotropical species are likely to face habitat reductions, especially in South American forests, while several Australian and major structural pest species may expand their range. Currently, densely populated cities in the Neotropics, the south-western US, Australia and South Asia could be within the range of one to five Heterotermes species. In agricultural areas, Australia and the Neotropics—both heavily reliant on agriculture—are highly vulnerable, and this vulnerability is expected to worsen as more land is converted to agricultural use.

城市和农业地区受到白蚁害虫属异白蚁的威胁:来自物种分布模型和系统发育的见解
白蚁,特别是异白蚁属的白蚁,是影响全球城市和农业环境的重要害虫。尽管它们有影响,但异termes的分布在很大程度上被忽视了。通过将生物气候、土地利用、连通性、土壤和高程等变量整合到物种分布模型(SDMs)中,对15种异温目物种的潜在分布进行预测。这些模型预测了短期(2021-2040)、中期(2041-2060)和长期(2061-2080)3种共享社会经济路径(SSP1-2.6、SSP2-4.5和SSP5-8.5)情景下的生境适宜性。我们的研究结果强调了温度、连通性和土壤湿度对白蚁分布的关键影响,揭示了气候变化导致白蚁向新区域扩张的潜力。新热带地区和澳大利亚的大部分地区可能适合至少一种物种。我们的研究还检验了将系统发育数据纳入sdm的有效性,证明了其在预测共同发生物种分布方面的可靠性增强,尽管其有效性在地理上孤立的物种中有所降低。未来的预测表明,由于城市化、农业扩张和气候变化的加剧,范围将发生重大变化。新热带物种的栖息地可能会减少,尤其是在南美森林,而一些澳大利亚和主要的结构性害虫物种可能会扩大它们的活动范围。目前,在新热带地区、美国西南部、澳大利亚和南亚的人口稠密的城市,可能只有一到五种异termes物种。在农业地区,严重依赖农业的澳大利亚和新热带地区非常脆弱,而且随着越来越多的土地转为农业用途,这种脆弱性预计会恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信