Caroline Rech, Leandro do Prado Ribeiro, José Maurício Simões Bento, Eduardo José Crevelin, Cristiano André Pott, Cristiane Nardi
{"title":"Crotalaria juncea reduces larval survival and adult fecundity of Diabrotica speciosa","authors":"Caroline Rech, Leandro do Prado Ribeiro, José Maurício Simões Bento, Eduardo José Crevelin, Cristiano André Pott, Cristiane Nardi","doi":"10.1007/s10340-025-01890-6","DOIUrl":"https://doi.org/10.1007/s10340-025-01890-6","url":null,"abstract":"<p>In this study, we hypothesized that <i>Crotalaria juncea</i> (L., Fabaceae), particularly due to its content of the pyrrolizidine alkaloid monocrotaline, would affect the development, fecundity, and longevity of <i>Diabrotica speciosa</i> (Germar) Coleoptera: Chrysomelidae). We initially assessed the effects of <i>C. juncea</i> plants and their various parts (leaves, stems, and roots) on the insect. Newly hatched larvae were inoculated in containers with (i) popcorn plants (<i>Zea mays</i> L. var <i>everta</i>); (ii) <i>C. juncea</i> plants; (iii) popcorn plants associated with <i>C. juncea</i>; and (iv) popcorn plants with portions of leaves, stems, and roots (mulch) of <i>C. juncea</i> (25 ± 2 °C, 60 ± 10% RH, and a 14-h photoperiod). The larvae were kept in these conditions until adult emergence, after which the adults were provided with common bean leaflets. The presence of <i>C. juncea</i> during the larval stage influenced the biological parameters of <i>D. speciosa</i>. We observed 100% larval mortality when exposed to isolated <i>C. juncea</i> plants, and a decrease in immature survival and adult longevity when <i>C. juncea</i> was associated with popcorn. In a subsequent trial, we investigated the effects of crude organic extracts of <i>C. juncea</i> on the same biological parameters. Newly hatched larvae were placed on popcorn plants with roots treated with extracts from different parts of <i>C. juncea</i> (aerial parts, roots, and entire plants) and using various solvents (hexane, dichloromethane, and methanol) as extractors. Plants with roots treated with root extracts of <i>C. juncea</i> exhibited lower survival rates during the immature stage, as well as reduced fecundity and egg viability. This indicates that allelochemicals from <i>C. juncea</i> have a detrimental impact on the development, fecundity, and viability of <i>D. speciosa</i> eggs. Chemical analysis of the<i> C. juncea</i> extracts revealed that monocrotaline, while present in various plant parts, is not the sole component responsible for the observed effects on the insects.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"45 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena Wey, Hanna Neuenschwander, Etienne Hoesli, Monika Maurhofer, Giselher Grabenweger
{"title":"Autodissemination of Metarhizium brunneum: a strategy for biological control of adult Japanese beetles","authors":"Magdalena Wey, Hanna Neuenschwander, Etienne Hoesli, Monika Maurhofer, Giselher Grabenweger","doi":"10.1007/s10340-025-01892-4","DOIUrl":"https://doi.org/10.1007/s10340-025-01892-4","url":null,"abstract":"<p>The Japanese beetle (<i>Popillia japonica</i>) is an invasive scarab beetle originating from Japan. In the European Union, it is listed as a priority quarantine pest. Currently, it is mainly controlled using synthetic insecticides. Here, we tested an environmentally friendly control alternative. We investigated whether Japanese beetle adults can be used as vectors to autodisseminate lethal doses of the European native entomopathogenic fungus <i>Metarhizium brunneum</i> ART 212 within adult populations. Additionally, we tested whether infested females could carry conidia into the soil environment during oviposition, increasing neonate larval mortality. We showed that inoculated adults can indeed transmit the fungal conidia horizontally for up to two days, significantly reducing the survival of both donor and recipient beetles in same-sex and opposite-sex couples. Furthermore, horizontal transmission among adults was verified under semi-field conditions. Another set of laboratory tests showed that beetles carried the inoculum to their oviposition sites, where larval survival was reduced at high concentrations (≥ 1.11 × 10<sup>5</sup> conidia/g substrate). However, the release of inoculated beetles in semi-field cages resulted in soil fungal concentrations more than ten times lower, failing to provide larval control. Thus, carriage of <i>M. brunneum</i> ART 212 into the soil by female vectors does not seem to provide control of larvae outside the laboratory setup. However, our results suggest that lethal conidial doses can be autodisseminated among the more susceptible adults. This may be the basis for an environmentally friendly control strategy against invasive Japanese beetle adults, applicable in both agricultural and non-agricultural areas.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"49 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143847030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Makovetski, Andrew B. T. Smith, Paul K. Abram
{"title":"Crowdsourced online data as evidence of absence of non-target attack from the century-old introduction of Istocheta aldrichi for biological control of Popillia japonica in North America","authors":"Victoria Makovetski, Andrew B. T. Smith, Paul K. Abram","doi":"10.1007/s10340-025-01891-5","DOIUrl":"https://doi.org/10.1007/s10340-025-01891-5","url":null,"abstract":"<p>The vast majority of historical biological control introductions have not resulted in documented negative effects on non-target species. However, in some cases, an absence of evidence of harm could be due to insufficient evidence of absence: That is, data specifically gathered to show that non-target species are not affected by the released biological control agent. The parasitoid fly <i>Istocheta aldrichi</i> (Mesnil) (Diptera: Tachinidae) was introduced to North America a century ago as a biological control agent targeting the invasive Japanese beetle, <i>Popillia japonica</i> Newman (Coleoptera: Scarabaeidae). Despite its longstanding and widespread establishment, the host specificity of <i>I. aldrichi</i> remains underexplored due to a lack of dedicated post-release monitoring. Leveraging crowdsourced data from iNaturalist.org, we investigated potential non-target parasitism among scarab beetles observed within the current geographic range of <i>I. aldrichi</i>. The taxonomic accuracy of iNaturalist identifications was evaluated and curated. Our analysis of > 21,000 observations of non-target scarabs photographed within the geographic range of <i>I. aldrichi</i> suggests that <i>I. aldrichi</i> is highly specific to <i>P. japonica</i>. Candidate parasitoid eggs resembling those of <i>I. aldrichi</i> were extremely rare on non-target species, representing less than 0.001% of all observations and not exceeding 1.3% of observations for any individual non-target species. These findings provide evidence that the incidence of non-target attacks by <i>I. aldrichi</i> is likely negligible, at least with respect to the scarab species commonly observed on iNaturalist. They also show the potential for crowdsourced data to complement traditional methods assessing whether non-target ecological impacts may have resulted from past biological control introductions.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"49 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143841750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing pepper resistance to MEAM1 whiteflies: the role of BABA as a chemical priming agent","authors":"Helong Zhang, Haobo Guo, Yaqi Wen, Qingjun Wu, Youjun Zhang, Xiaoguo Jiao","doi":"10.1007/s10340-025-01893-3","DOIUrl":"https://doi.org/10.1007/s10340-025-01893-3","url":null,"abstract":"<p>Plants can acquire an enhanced resistance against pathogen by application of natural or artificial compounds. Application of these compounds results in earlier, faster and/or stronger responses of plant to the subsequent pathogen attacks, a process called chemical priming. Beta-aminobutyric acid (BABA) is recognized for its inducing and priming ability to enhance plant resistance against a broad spectrum of pathogens. However, BABA potential to induce and prime pepper plant (<i>Capsicum annuum</i>) resistance against the invasively polyphagous MEAM1 whitefly remains understudied. In the present study, we sprayed pepper plants with 20 mM BABA to assess its defense responses, as well as the host preference and performance of MEAM1. We found that MEAM1 showed a substantial preference for settling and laying eggs and a significantly higher performance on untreated plants in comparison with those treated with BABA. Compared with the control plants, BABA-treated pepper plants significantly increased the contents of total phenols and flavonoids, which coincided with the increased expression of the genes in the phenylpropanoid pathway. These results suggest that induced resistance of pepper by BABA application reduced MEAM1 host preference and performance. Furthermore, MEAM1 infestation on BABA-treated pepper plants significantly increased the contents of total phenols and flavonoids, and their expression of the genes in the phenylpropanoid biosynthesis pathway. Collectively, our findings suggest that BABA is a potent chemical inducer and priming agent, capable of bolstering pepper resistance against MEAM1. The resistance mechanism is partly due to the activation of the salicylic acid (SA) signaling and the phenylpropanoid metabolic pathways.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"211 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriele Bolletta, Sten Boonen, Maarten A. Jongsma, Niel Verachtert, Marcel Dicke, Karen J. Kloth, Apostolos Pekas
{"title":"To share or not to share: prey-sharing behavior in the larvae of two aphid predators and implications for biological pest control","authors":"Gabriele Bolletta, Sten Boonen, Maarten A. Jongsma, Niel Verachtert, Marcel Dicke, Karen J. Kloth, Apostolos Pekas","doi":"10.1007/s10340-025-01886-2","DOIUrl":"https://doi.org/10.1007/s10340-025-01886-2","url":null,"abstract":"<p>Prey sharing in predatory mammals and birds has been shown to reduce fights for food between predators, increase predation efficacy, and safeguard food availability by reciprocal sharing, providing immediate and delayed benefits for the sharers. However, little is known about the incidence of prey sharing in arthropods and the implications for biological control have been mostly overlooked. In this study, the feeding behavior of two aphid predators, <i>Micromus angulatus</i> and <i>Chrysoperla carnea</i>, was investigated to assess the incidence of prey sharing and its possible consequences for biological control of aphids. A video-recording setup was used to investigate the feeding behavior of the predators at various predator/prey ratios. Different numbers of predatory larvae were placed into arenas containing five <i>Myzus persicae</i> subsp. <i>nicotianae</i>. The behavior of the predators was recorded for four hours and the number of prey killed was scored. Our results indicate that prey sharing is a density-dependent behavior, increasing at higher predator/prey ratios. Larvae of <i>M. angulatus</i> performed prey sharing seven times more often than <i>C. carnea</i> and accepted higher numbers of predators sharing a single aphid. Interestingly, a positive correlation between the number of prey-sharing events and the number of aphids killed by the predators was found, suggesting that prey sharing could increase the kill rate of the predators. Additionally, the presence of conspecific larvae enhanced the predation success of <i>M. angulatus</i>. Our findings indicate that prey sharing is an adaptive behavior that could improve the foraging efficacy and kill rate of arthropod predators.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"60 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabita Ranabhat, Hannah E. Quellhorst, Brandon Black, Jaycob Andersen, Breck Aguinaga, Matthew C. Hetherington, Georgina V. Bingham, Kun Yan Zhu, William R. Morrison
{"title":"A synergist increases short-term efficacy of long-lasting insecticide-incorporated netting against pyrethroid-resistant maize weevil, Sitophilus zeamais","authors":"Sabita Ranabhat, Hannah E. Quellhorst, Brandon Black, Jaycob Andersen, Breck Aguinaga, Matthew C. Hetherington, Georgina V. Bingham, Kun Yan Zhu, William R. Morrison","doi":"10.1007/s10340-025-01884-4","DOIUrl":"https://doi.org/10.1007/s10340-025-01884-4","url":null,"abstract":"<p>Principal active ingredients used in chemical control tactics after harvest are pyrethroids, including for long-lasting insecticide-incorporated netting (LLIN). However, pyrethroid resistance by stored product insects has become widespread. Thus, the aim of our study was to evaluate whether a synergist, piperonyl butoxide (PBO), could rescue efficacy of alpha-cypermethrin LLIN against a field strain and pyrethroid-resistant strain of maize weevil, <i>Sitophilus zeamais</i> (Motschulsky) in the laboratory. Adult <i>S. zeamais</i> were first exposed to the vials treated with PBO or acetone (solvent control) for 1 h or 3 h, then exposed to either alpha-cypermethrin LLIN or control netting for 1 h or 3 h. Immediate mortality was recorded directly after exposure, as well as delayed mortality at 24, 48, 72, and 168 h later with adult conditions recorded as alive, affected, or dead. At 1-h exposure, the addition of PBO significantly reduced the percentage of field strain <i>S. zeamais</i> adults alive by 7–42% after subsequently exposed to LLIN compared to the control, but PBO did not significantly affect the percentage of alive pyrethroid-resistant adults. After a 3-h exposure, there were significantly fewer field strain (by 24–47%) and pyrethroid-resistant (by 13–36%) individuals alive when exposed to PBO compared to the control. PBO elicited quicker mortality for the pyrethroid-resistant strain. We confirmed in a separate assay that our susceptible laboratory strain was more susceptible than our field and pyrethroid-resistant strain of <i>S. zeamais</i>. Our results suggest that the addition of a synergist to LLIN formulations may improve efficacy against stored product insects and support resistance management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"108 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Catalina Fernández, Sherah L. VanLaerhoven, Brent J. Sinclair, Roselyne M. Labbé
{"title":"Effects of acclimation on the cold tolerance of the pepper weevil","authors":"D. Catalina Fernández, Sherah L. VanLaerhoven, Brent J. Sinclair, Roselyne M. Labbé","doi":"10.1007/s10340-025-01887-1","DOIUrl":"https://doi.org/10.1007/s10340-025-01887-1","url":null,"abstract":"<p>The pepper weevil, <i>Anthonomus eugenii</i>, is a subtropical pest of pepper plants that appears to be expanding its geographic range as evidenced by its increasing occurrence and persistence in field and greenhouse pepper crops in temperate areas. Here, we investigated the cold tolerance of <i>A. eugenii</i> and its potential for winter survival in temperate areas by comparing non-acclimated (24 °C) and cold acclimated (10 °C) adults and larvae for their cold tolerance strategy, supercooling points, and lower lethal thermal limits. Acclimated larvae were treated with silver iodide to assess their survival in the presence of an ice nucleator. Survival of non-acclimated adults was measured following exposure to 0 °C for an extended period. We also tested whether non-acclimated adults and larvae could survive winter at three outdoor sites in southwestern Ontario (agricultural field, adjacent to unheated building, and inside an unheated building). Adults and larvae died at freezing and even pre-freezing temperatures. Acclimation improved adult cold tolerance, decreasing the LT<sub>50</sub> by 3 °C, with half of the non-acclimated adults surviving around 6 days at 0 °C. External inoculation increased larval supercooling points (SCPs), but did not improve cold tolerance. In winter field studies, survival was evident only in the first month, but no insect survived afterwards at any of the overwintering sites. We conclude that <i>A. eugenii</i> is chill-susceptible, and winter temperatures will restrict outdoor establishment in temperate areas, but that high winter temperatures in empty greenhouses encourage indoor establishment.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"60 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the nematotoxic effect of Streptomyces spp. against the root-knot nematode, Meloidogyne enterolobii in guava","authors":"Janani Mani, Jayakanthan Mannu, Prabhu Somasundaram, Devrajan Kandasamy, Thamizh Vendan Ragupathy, Harish Sankarasubramanian, Seenivasan Nagachandrabose","doi":"10.1007/s10340-025-01889-z","DOIUrl":"https://doi.org/10.1007/s10340-025-01889-z","url":null,"abstract":"<p>Guava production in India faces significant challenges due to the invasion of the root-knot nematode <i>Meloidogyne enterolobii</i>. Biological control using metabolite-producing <i>Streptomyces</i> spp. offers a better alternative to synthetic nematicides for managing nematode populations in soil and roots. The native <i>Streptomyces rochei</i> isolated from nematode suppressive guava rhizosphere demonstrated complete inhibition of <i>M. enterolobii</i> egg hatching (100%) and juvenile mortality (100%) compared to other native species. Further, secondary metabolites produced by <i>S. rochei</i> were profiled using gas chromatography/mass spectrometry (GC/MS) analysis and molecular docking experiments were carried out with the key protein Me col-1 (collagen gene) of <i>M. enterolobii</i>. Notably, bioactive compounds of <i>S. rochei</i> such as oxymatrine, melezitose, 2(3H)-furanone, 5-hexyldihydro, 2-nonadecanone 2, and cyclohexane exhibited nematicidal activities. Among them, oxymatrine (− 6.7 kcal/mol), melezitose (− 6.5 kcal/mol), and 2(3H)-furanone (−4.4 kcal/mol) showcased the highest binding affinity against Me col-1. A glasshouse experiment was conducted to study the nematode suppressive effect of cell-free culture filtrate extracts of <i>S. rochei</i> GA, <i>Streptomyces</i> spp<i>.</i> GHS-3 and GHRS-5 on guava seedlings inoculated with <i>M. enterolobii</i>. Guava plants treated with <i>S. rochei</i> GA suppressed <i>M. enterolobii</i> parasitism with a 79.1% reduction in the number of egg masses, and promoted plant growth by 75%. This study highlights the nematotoxic potential of biomolecules produced by <i>S. rochei</i> GA as a promising alternative to synthetic nematicides for the management of <i>M. enterolobii.</i></p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"2017 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang, He-Xi Huang, John T. Trumble, Chengxing Wang, Zheng-Yang Zhu, Lian-Sheng Zang, Nicolas Desneux, Ning Di, Yuan-Xi Li
{"title":"Ecological risks of cadmium-contaminated non-prey food on three Trichogramma egg parasitoids","authors":"Jie Wang, He-Xi Huang, John T. Trumble, Chengxing Wang, Zheng-Yang Zhu, Lian-Sheng Zang, Nicolas Desneux, Ning Di, Yuan-Xi Li","doi":"10.1007/s10340-025-01888-0","DOIUrl":"https://doi.org/10.1007/s10340-025-01888-0","url":null,"abstract":"<p>Floral resources such as nectar are essential for increasing survival and population growth of synovigenic parasitic wasps in agroecosystems. Although the bottom-up effect of cadmium (Cd) has been identified as a major ecological force influencing multitrophic interactions of synovigenic parasitoids, information on the direct effects of Cd-contaminated floral resources on the fitness of natural enemies which might impact their fitness and effectiveness are still lacking. In this study, we assessed the performance of three commonly used <i>Trichogramma</i> species exposed to Cd-contaminated sucrose solutions. Female survival, longevity, the female/male adult proportion, and F<sub>1</sub> emergence rate of <i>T. japonicum</i> were not affected by Cd concentrations. However, a decline in the survival rate of females, their longevity, and female/male adult proportion were observed for <i>T. dendrolimi</i> at high Cd concentration. No significant differences in female/male adult proporation and longevity of <i>T. ostriniae </i>were found at wide Cd concentration ranges. Our results suggest that Cd-contaminated nectar resources can negatively affect performance of some <i>Trichogramma</i> spp., indicating Cd contamination in nectar would directly reduce the potential value of these species in IPM programs. These results not only increase our understanding of interspecific variations in synovigeny of <i>Trichogramma</i>, but also suggest that releases of <i>T. japonicum</i> and <i>T. ostriniae</i> rather than <i>T. dendrolimi</i> should be considered at Cd-contaminated sites.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"57 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengdi Zhang, Junjie Yan, Jorge A. Zavala, Subba Reddy Palli, Guy Smagghe, Yulin Gao
{"title":"Gut bacteria in potato tuberworm (Phthorimaea operculella) populations are dominated by Enterococcus spp. and these play a significant role in carbohydrate metabolism and host growth","authors":"Mengdi Zhang, Junjie Yan, Jorge A. Zavala, Subba Reddy Palli, Guy Smagghe, Yulin Gao","doi":"10.1007/s10340-025-01882-6","DOIUrl":"https://doi.org/10.1007/s10340-025-01882-6","url":null,"abstract":"<p>The pivotal role of gut microbiota in maintaining the insect host’s well-being has been extensive researched. Here, our research objective was to determine the microbes in the gut of larvae of the potato tuberworm (<i>Phthorimaea operculella</i>) and to investigate the role they play in the host development, metabolism, gut structure integrity and immune deficiency (Imd). Shotgun metagenomics sequencing from specimens collected in major potato-producing regions in China, and principal coordinate analysis revealed that the geographic location explained much of the variance in bacterial composition, but <i>Enterococcus mundtii</i> was dominant in all samples. KEGG analysis demonstrated that carbohydrate metabolism was the major function of the <i>P. operculella</i>’s gut microbiome. Subsequently, with the use of artificial diet supplemented with antibiotics, the gut microbes were removed, especially the bacteria of the <i>Enterococcus</i> genus were significantly decreased. Typically, insects fed with antibiotics showed a lower carbohydrate metabolism, survival rate, longer developmental period and poorer fecundity. Metabolomics analysis also confirmed that the antibiotics treatment had a striking impact on the metabolic profile in the gut, especially for starch degradation. In addition, the gut homeostasis with its microbiota composition, metabolism and gut structure was damaged in the antibiotics-treated insects. In summary, our data provide evidence that a complex interaction exists between the microbiome of the gut and the metabolism and structure integrity of the host insect, which is essential for its growth and development. These findings enhance our comprehension of the microbiota's function in insects and facilitate the advancement of environmentally friendly management strategies for this pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"20 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143695674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}