Journal of Pesticide Science最新文献

筛选
英文 中文
The target site of the novel fungicide quinofumelin, Pyricularia oryzae class II dihydroorotate dehydrogenase. 新型杀菌剂喹诺菲林ⅱ类二氢根酸脱氢酶的靶点。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-11-20 DOI: 10.1584/jpestics.D22-027
Norikazu Higashimura, Akira Hamada, Toshiaki Ohara, Seiya Sakurai, Hiroyuki Ito, Shinichi Banba
{"title":"The target site of the novel fungicide quinofumelin, <i>Pyricularia oryzae</i> class II dihydroorotate dehydrogenase.","authors":"Norikazu Higashimura,&nbsp;Akira Hamada,&nbsp;Toshiaki Ohara,&nbsp;Seiya Sakurai,&nbsp;Hiroyuki Ito,&nbsp;Shinichi Banba","doi":"10.1584/jpestics.D22-027","DOIUrl":"https://doi.org/10.1584/jpestics.D22-027","url":null,"abstract":"<p><p>The target site of the novel fungicide quinofumelin was investigated in the rice blast fungus <i>Pyricularia oryzae</i>. Quinofumelin-induced mycelial growth inhibition was reversed by orotate but not by dihydroorotate. Recovery tests suggested that the target site of quinofumelin was dihydroorotate dehydrogenase (DHODH), which catalyzes the oxidation of dihydroorotate to orotate. Quinofumelin strongly inhibited <i>P. oryzae</i> class 2 DHODH (DHODH II) (IC<sub>50</sub>: 2.8 nM). The inhibitory activities of mycelial growth and DHODH II were strongly positively correlated, indicating that DHODH II inhibition by quinofumelin lead to antifungal activity. A <i>P. oryzae</i> DHODH II gene (<i>PoPYR4</i>) disruption mutant (<i>ΔPopyr4</i>), showing the same tendency as the quinofumelin-treated wild strain in recovery tests, was constructed, and disease symptoms were not observed in rice plants infected by <i>ΔPopyr4</i>. Thus, DHODH II, which plays an important role in pathogenicity and mycelial growth, is found to be the target site of quinofumelin.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 4","pages":"190-196"},"PeriodicalIF":2.4,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/fe/jps-47-4-D22-027.PMC9716045.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10353890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Diatomaceous earth foliar spraying along with adjuvants in pistachio orchards associated with the common pistachio psylla, Agonoscena pistaciae. 在与普通开心果木虱相关的开心果果园中,伴随着佐剂的硅藻土叶面喷洒。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.D22-019
Saleh Panahandeh, Kamal Ahmadi
{"title":"Diatomaceous earth foliar spraying along with adjuvants in pistachio orchards associated with the common pistachio psylla, <i>Agonoscena pistaciae</i>.","authors":"Saleh Panahandeh,&nbsp;Kamal Ahmadi","doi":"10.1584/jpestics.D22-019","DOIUrl":"https://doi.org/10.1584/jpestics.D22-019","url":null,"abstract":"<p><p>The common pistachio psylla, <i>Agonoscena pistaciae</i>, is a serious global pest menacing pistachio orchards. Considering the dangers of using excessive chemical pesticides, it seems that using natural insecticides such as diatomaceous earth is a suitable way to lower the residual amount of highly hazardous pesticides. In this study, the effects of diatomaceous earth with different additives, including dipotassium hydrogen phosphate, polyurethane glue as a wood adhesive, and potassium silicate, were investigated in several concentrations over two years in orchard conditions. Although all treatments showed significant effects, the most effective treatments were (diatomaceous earth+dipotassium hydrogen phosphate) and (diatomaceous earth+polyurethane glue). Therefore, the use of diatomaceous earth combined with the additive materials mentioned can potentially be a safe method for the integrated management of the common pistachio psylla.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"125-130"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e1/a1/jps-47-3-D22-019.PMC9706285.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10371197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of mathematical modeling and its inverse analysis for precise assessment of pesticide dissipation in a paddy environment. 利用数学模型及其逆分析精确评价水稻环境中农药耗散。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.J22-03
Kei Kondo
{"title":"Use of mathematical modeling and its inverse analysis for precise assessment of pesticide dissipation in a paddy environment.","authors":"Kei Kondo","doi":"10.1584/jpestics.J22-03","DOIUrl":"https://doi.org/10.1584/jpestics.J22-03","url":null,"abstract":"<p><p>The extrapolability of the lysimeter test as a dissipation simulator in an actual paddy field was evaluated using mathematical models and their inverse analyses for predicting pesticide fate and transport processes in paddy test systems. As a source of experimental data, a four-year comparative experiment in lysimeters and paddy fields was conducted using various paddy pesticides. First, the dissipations for various active ingredients in granule pesticides under submerged applications were statistically compared using simple kinetic modeling. Second, the dissipation pathways, unobserved experimental components, and effect of the experimental setting were evaluated using a higher tier mathematical model with a novel inverse analysis protocol. Finally, owing to experimental constraints, the unobtainable parameters were extracted from the laboratory container test before being transferred to compare the outdoor experimental data under different formulation types.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"146-153"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bd/1a/jps-47-3-J22-03.PMC9706284.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10378470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil. 土壤对农药的吸收和根-梢转运能力的研究。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.J22-01
Sayuri Namiki
{"title":"Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil.","authors":"Sayuri Namiki","doi":"10.1584/jpestics.J22-01","DOIUrl":"https://doi.org/10.1584/jpestics.J22-01","url":null,"abstract":"<p><p>The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2-10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in <i>Brassica rapa</i> L. var. <i>perviridis</i> were relatively high. In addition, the changes in shoot concentrations with growth stage of <i>B. rapa</i> were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical's properties and behavior of organic chemicals in the soil.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"131-138"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/a1/jps-47-3-J22-01.PMC9706277.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10378474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of novel pyridine carboxamides with antifungal activity as potential succinate dehydrogenase inhibitors. 具有抗真菌活性的新型吡啶类羧胺类琥珀酸脱氢酶抑制剂的发现。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.D22-017
Zhongzhong Yan, Zihui Yang, Longjian Qiu, Yan Chen, Aijun Li, Taopeng Chang, Xinzhe Niu, Jingyan Zhu, Shihao Wu, Feng Jin
{"title":"Discovery of novel pyridine carboxamides with antifungal activity as potential succinate dehydrogenase inhibitors.","authors":"Zhongzhong Yan,&nbsp;Zihui Yang,&nbsp;Longjian Qiu,&nbsp;Yan Chen,&nbsp;Aijun Li,&nbsp;Taopeng Chang,&nbsp;Xinzhe Niu,&nbsp;Jingyan Zhu,&nbsp;Shihao Wu,&nbsp;Feng Jin","doi":"10.1584/jpestics.D22-017","DOIUrl":"https://doi.org/10.1584/jpestics.D22-017","url":null,"abstract":"<p><p>Fifteen novel pyridine carboxamide derivatives bearing a diarylamine-modified scaffold were designed, synthesized, and their antifungal activity was evaluated. Preliminary bioassay results showed that some of the synthesized compounds exhibited moderate to good <i>in vitro</i> antifungal activity. Further, compound 6-chloro-<i>N</i>-(2-(phenylamino)phenyl)nicotinamide (<b>3f</b>) displayed good <i>in vivo</i> antifungal activity against <i>Botrytis cinerea</i>. The enzymatic test on <i>B. cinerea</i> succinate dehydrogenase (SDH) showed that the inhibitory activity possessed by compound <b>3f</b> equally matches that of thifluzamide. Molecular docking results demonstrated that compound <b>3f</b> could commendably dock with the active site of SDH <i>via</i> stable hydrogen bonds and hydrophobic interactions, suggesting the possible binding modes of the title compounds with SDH. The results above revealed that the target compounds would be the leading fungicide compound for further investigation.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"118-124"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/89/jps-47-3-D22-017.PMC9706280.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10378471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging technologies for the chemical control of root parasitic weeds. 根寄生杂草化学防治的新技术。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.D22-045
Kojiro Kawada, Tomoyuki Koyama, Ikuo Takahashi, Hidemitsu Nakamura, Tadao Asami
{"title":"Emerging technologies for the chemical control of root parasitic weeds.","authors":"Kojiro Kawada,&nbsp;Tomoyuki Koyama,&nbsp;Ikuo Takahashi,&nbsp;Hidemitsu Nakamura,&nbsp;Tadao Asami","doi":"10.1584/jpestics.D22-045","DOIUrl":"https://doi.org/10.1584/jpestics.D22-045","url":null,"abstract":"<p><p>Parasitic plants in the Orobanchaceae family include devastating weed species, such as <i>Striga</i>, <i>Orobanche</i>, and <i>Phelipanche</i>, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"101-110"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/de/jps-47-3-D22-045.PMC9706279.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10371196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological soil disinfestation compatible with renewable energy production for sustainable agriculture. 生物土壤消毒与可再生能源生产兼容,促进可持续农业。
IF 1.5 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.D22-010
Shaohua Chen, Tatsuya Hirano, Yoshiaki Hayashi, Hiroto Tamura
{"title":"Biological soil disinfestation compatible with renewable energy production for sustainable agriculture.","authors":"Shaohua Chen, Tatsuya Hirano, Yoshiaki Hayashi, Hiroto Tamura","doi":"10.1584/jpestics.D22-010","DOIUrl":"10.1584/jpestics.D22-010","url":null,"abstract":"<p><p>Biological soil disinfestation (BSD) is biotechnology to control soil-borne plant pathogens based on the anaerobic-reducing environment in soil and the functions of indigenous microbes. A new sustainable agricultural technology, the GET system, which produces and recovers methane as renewable energy from paddy fields, has a structure and principles similar to those of BSD technology. To confirm the potential of the GET system as BSD technology, the microbial community structures in the GET system were analyzed using next-generation sequencing. Thirty-four phyla were detected: 31 bacterial and 3 archaeal. <i>Firmicutes</i> dominated during the experimental period, which plays an important role in BSD functions such as organic decomposition, nitrate removal, and soil-borne pathogen elimination. The ability of the GET system to control soil-borne pathogens as well as produce renewable energy was demonstrated.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"111-117"},"PeriodicalIF":1.5,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ee/bb/jps-47-3-D22-010.PMC9706286.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10371201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a rice herbicide, fenquinotrione. 水稻除草剂芬喹诺酮的研制。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-08-20 DOI: 10.1584/jpestics.J22-02
Atsushi Nagamatsu, Ken Ueda, Ryuji Tamai, Shinki Tani, Shunsuke Yamamoto
{"title":"Development of a rice herbicide, fenquinotrione.","authors":"Atsushi Nagamatsu,&nbsp;Ken Ueda,&nbsp;Ryuji Tamai,&nbsp;Shinki Tani,&nbsp;Shunsuke Yamamoto","doi":"10.1584/jpestics.J22-02","DOIUrl":"https://doi.org/10.1584/jpestics.J22-02","url":null,"abstract":"<p><p>Fenquinotrione is a novel rice herbicide that was discovered and developed by Kumiai Chemical Industry Co., Ltd. It can control a wide range of broadleaf and sedge weeds with excellent rice selectivity at 30 g a.i./10 a and is as effective as the wild type on acetolactate synthase inhibitor-resistant weeds. Our metabolic and molecular biological studies showed that CYP81A6-mediated demethylation and subsequent glucose conjugation are responsible for the safety of fenquinotrione in rice. Fenquinotrione was registered in Japan in 2018, and various products containing fenquinotrione have been launched. With its high efficacy and excellent rice selectivity, we believe that fenquinotrione will contribute to efficient food production in the future.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 3","pages":"139-145"},"PeriodicalIF":2.4,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6c/d9/jps-47-3-J22-02.PMC9706282.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10378472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into the interaction between gabazine (SR-95531) and Laodelphax striatellus GABA receptors. gabazine (SR-95531)与纹状线虫GABA受体相互作用的结构研究。
IF 2.4 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-05-20 DOI: 10.1584/jpestics.D22-007
Yuki Fujie, Genyan Liu, Fumiyo Ozoe, Yoshihisa Ozoe
{"title":"Structural insights into the interaction between gabazine (SR-95531) and <i>Laodelphax striatellus</i> GABA receptors.","authors":"Yuki Fujie,&nbsp;Genyan Liu,&nbsp;Fumiyo Ozoe,&nbsp;Yoshihisa Ozoe","doi":"10.1584/jpestics.D22-007","DOIUrl":"https://doi.org/10.1584/jpestics.D22-007","url":null,"abstract":"<p><p>γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1β2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (<i>Laodelphax striatellus</i>) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1β2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1β2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the \"aromatic box\" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"78-85"},"PeriodicalIF":2.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/d2/jps-47-2-D22-007.PMC9184248.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permeability of the fish intestinal membrane to bulky chemicals. 鱼类肠膜对大体积化学物质的渗透性。
IF 1.5 4区 农林科学
Journal of Pesticide Science Pub Date : 2022-05-20 DOI: 10.1584/jpestics.D21-055
Chiyoko Miyata, Yoshihide Matoba, Makiko Mukumoto, Yoshiaki Nakagawa, Hisashi Miyagawa
{"title":"Permeability of the fish intestinal membrane to bulky chemicals.","authors":"Chiyoko Miyata, Yoshihide Matoba, Makiko Mukumoto, Yoshiaki Nakagawa, Hisashi Miyagawa","doi":"10.1584/jpestics.D21-055","DOIUrl":"10.1584/jpestics.D21-055","url":null,"abstract":"<p><p>The ability to predict the environmental behavior of chemicals precisely is important for realizing more rational regulation. In this study, the bioaccumulation of nine chemicals of different molecular weights absorbed <i>via</i> the intestinal tract was evaluated in fish using the everted gut sac method. The amounts of chemicals that passed through the intestinal membrane after a 24-hr exposure were significantly decreased for chemicals with MW≥548 and D<sub>max min</sub>≥15.8 Å (or D<sub>max aver</sub>≥17.2 Å). These thresholds are consistent with those previously proposed in terms of MW (>800) and molecular size (D<sub>max min</sub>>15.6 Å or D<sub>max aver</sub>>17.1 Å) for the limit of permeable chemicals through the gill membrane. The results show that the same MW and D<sub>max</sub> criteria can be used to predict low bioaccumulation through both the gill membrane and the intestinal tract. These findings are helpful in reducing the need to conduct animal tests in environmental safety studies.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"86-92"},"PeriodicalIF":1.5,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/11/jps-47-2-D21-055.PMC9184245.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信