Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil.

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY
Sayuri Namiki
{"title":"Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil.","authors":"Sayuri Namiki","doi":"10.1584/jpestics.J22-01","DOIUrl":null,"url":null,"abstract":"<p><p>The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2-10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in <i>Brassica rapa</i> L. var. <i>perviridis</i> were relatively high. In addition, the changes in shoot concentrations with growth stage of <i>B. rapa</i> were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical's properties and behavior of organic chemicals in the soil.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/a1/jps-47-3-J22-01.PMC9706277.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.J22-01","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2-10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in Brassica rapa L. var. perviridis were relatively high. In addition, the changes in shoot concentrations with growth stage of B. rapa were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical's properties and behavior of organic chemicals in the soil.

Abstract Image

Abstract Image

Abstract Image

土壤对农药的吸收和根-梢转运能力的研究。
通过对农药的吸收试验,阐明不同植物种类间的差异,以及不同生长阶段和生长条件对农药吸收和转运能力的影响。各农药的根、梢浓度在不同植物种间存在2 ~ 10倍的差异,其中在紫芸苔上的根、梢浓度较高。此外,根系发育还会影响叶片中芽部浓度随生育期的变化。温度对不同农药的吸收和转运能力的影响不同,但在较短的日照时间内,吸收和转运能力较高。这表明,植物对农药的吸收和转运不仅受土壤中有机化学物质的性质和行为的影响,还受根系发育和生长条件(如温度和日照长度)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信