T N Madhu, E K Saneera, R Thava Prakasha Pandian, M Sujithra, A Bhavishya, N R Nagaraja, S Elain Apshara, A Josephrajkumar, M K Rajesh
{"title":"A new pod bioassay method to determine the toxicity of insecticides against Tea mosquito bug, <i>Helopeltis theivora</i>.","authors":"T N Madhu, E K Saneera, R Thava Prakasha Pandian, M Sujithra, A Bhavishya, N R Nagaraja, S Elain Apshara, A Josephrajkumar, M K Rajesh","doi":"10.1584/jpestics.D24-028","DOIUrl":"10.1584/jpestics.D24-028","url":null,"abstract":"<p><p>The insecticide susceptibility of <i>Helopeltis theivora</i> Waterhouse (Hemiptera: Miridae) is being evaluated using shoot and glass-vial assay as described by IRAC. However, the reliability of the assay depends on feeding preference and contact toxicity. Hence, the cocoa pod was used as a substrate to test the susceptibility of <i>H. theivora</i> in comparison with existing methods. The experimental results revealed that the LC<sub>50</sub> value of all of the insecticides was relatively lower in the pod bioassay than the other two methods and exhibited maximum mortality within 6 hr of post-exposure. Among insecticides, fipronil was the most effective molecule followed by lambda-cyhalothrin. <i>H. theivora</i>, which prefers to feed on a pod due to more tissue turgidity, thus facilitated adequate sap ingestion; whereas, these were limited in shoot and glass-vial bioassays. Therefore, it could be used as a methodology to determine the susceptibility of <i>H. theivora</i> against a wide range of insecticide molecules.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"285-291"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sachiko Kashojiya, Shin-Ichiro Asano, Paul W Oeller, Takashi Yamamoto
{"title":"Functional expression of <i>Bacillus thuringiensis</i> Cry proteins on the surface of <i>Bacillus subtilis</i> spores.","authors":"Sachiko Kashojiya, Shin-Ichiro Asano, Paul W Oeller, Takashi Yamamoto","doi":"10.1584/jpestics.D24-032","DOIUrl":"10.1584/jpestics.D24-032","url":null,"abstract":"<p><p>The Cry1Fa insecticidal protein from <i>Bacillus thuringiensis</i> (Bt) was expressed on the surface of <i>Bacillus subtilis</i> (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion. The expression of the Cry protein on the Bs spores was confirmed by fluorescence microscopy using an anti-Cry1Fa antibody. The Cry protein, tightly anchored to the spore surface, appeared to be functional in terms of receptor binding. Spore-Cry1Fa bound to Sf9 cells expressing <i>Spodoptera frugiperda</i> (Sf) ABCC2 transporter and killed the cells within 60 min. Additionally, nano-lipid particles of SfABCC2 were produced using styrene-maleic acid (SMA) to demonstrate the binding to Spore-Cry1Fa.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"232-242"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening of effective pesticides to control rubber tree leaf fall disease (LFD) caused by <i>Neopestalotiopsis</i> and <i>Colletotrichum</i> fungi in Indonesia.","authors":"Emiko Okubo-Kurihara, Tri Rapani Febbiyanti, Firman Ashari, Yuki Yanagawa, Emi Osada, Tomoko Kuriyama, Masafumi Shimizu, Farriza Diyasti, Minami Matsui","doi":"10.1584/jpestics.D24-020","DOIUrl":"10.1584/jpestics.D24-020","url":null,"abstract":"<p><p>In recent years, the stable supply of natural rubber has been threatened by a new leaf fall disease (LFD) caused by filamentous fungi. We screened pesticides to control the growth of <i>Neopestalotiopsis</i> sp. and <i>Colletotrichum</i> sp., which are considered to be the causal agents of LFD in rubber trees. We identified two effective pesticides, Quinondo 80% WP and Topsin M WP. When these two candidate pesticides were used in combination at 10 ppm each, there was enhanced inhibition of growth of both fungal species. Furthermore, the use of Quinondo 80% WP was shown to suppress the development of necrotic lesions caused by <i>Neopestalotiopsis</i> in rubber seedlings. These results suggest that Quinondo 80% WP is effective in controlling the spread of damage caused by LFD infection in rubber trees, and further verification of the concentration and method of application is needed to further demonstrate its effectiveness.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"277-284"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Barley is a potential trap crop for root parasitic broomrape weeds.","authors":"Maiko Inoue, Xiaonan Xie, Kaori Yoneyama","doi":"10.1584/jpestics.D24-034","DOIUrl":"10.1584/jpestics.D24-034","url":null,"abstract":"<p><p>Root parasitic broomrape (<i>Phelipanche</i> and <i>Orobanche</i> spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants. Therefore, monocots can be trap crops for broomrapes, as they induce seed germination but are not parasitized. In this study, we examined two European and one Japanese barley cultivar for their potential as trap crops for broomrapes. We found that the European cultivars, Sebastian and Golden Promise, are good potential trap crops, as they produce more SLs and exhibit higher mycorrhizal colonization rates as compared to the Japanese cultivar Shunrai.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"255-261"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative evaluation of trimethylated α-, β-, and γ-cyclodextrins as optimal dispersants for ready biodegradability testing of poorly water-soluble substances.","authors":"Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai","doi":"10.1584/jpestics.D24-015","DOIUrl":"10.1584/jpestics.D24-015","url":null,"abstract":"<p><p>We investigated whether various modified cyclodextrins (CDs) and emulsifiers could be applied as dispersing agents in ready biodegradability tests of poorly water-soluble substances. Trimethylated α-, β-, and γ-CDs and partially methylated β-CD were not biodegraded in the test period but accelerated the biodegradation of octabenzone and anthraquinone. The process by which trimethylated α-, β-, and γ-CDs enhance the biodegradation of test substances has been partially uncovered. These CDs create inclusion complexes with the substances, which then coalesce into larger aggregates. These aggregates disperse throughout the testing medium and attach to clusters of activated sludge, known as flocs. This close contact with the sludge speeds up the breakdown of the hydrophobic substances being tested.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"210-223"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara
{"title":"Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom <i>Coprinus comatus</i>.","authors":"Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara","doi":"10.1584/jpestics.D24-040","DOIUrl":"10.1584/jpestics.D24-040","url":null,"abstract":"<p><p>A search for antifungal compounds from the mushroom <i>Coprinus comatus</i> using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1<i>H</i>-furo[3,4-<i>b</i>]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for <i>Colletotrichum orbiculare</i> with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"243-254"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A suitable solvent for adsorption of poorly water-soluble substances onto silica gel in a ready biodegradability test.","authors":"Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai","doi":"10.1584/jpestics.D24-016","DOIUrl":"10.1584/jpestics.D24-016","url":null,"abstract":"<p><p>When a test substance is poorly water-soluble, it can be adsorbed onto silica gel to facilitate dispersibility in a ready biodegradability test. To uniformly adsorb the test substance onto silica gel, the substance is dissolved in a solvent and then mixed with the silica gel. It is desirable for the solvent to completely evaporate afterward. In this study, we identified <i>n</i>-hexane as a suitable solvent for this purpose. Furthermore, through fluorescence observation, we revealed that the test substance adsorbed onto the silica gel adhered to activated sludge flocs. This is thought to improve contact between the test substance and microorganisms, thereby accelerating biodegradation.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"271-276"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, synthesis, and biological evaluation of insect hormone agonists.","authors":"Taiyo Yokoi","doi":"10.1584/jpestics.J24-02","DOIUrl":"10.1584/jpestics.J24-02","url":null,"abstract":"<p><p>Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes. On the other hand, a virtual screening cascade combining ligand- and structure-based methods identified a piperazine derivative as a novel JH agonist. The results obtained in this study will be useful for the future development of novel insect growth regulators.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"303-310"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves","authors":"Munekazu Ogawa, Akihiro Nishimura, Satoshi Araki, Yuzuka Abe, Nanami Kuwahara, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani","doi":"10.1584/jpestics.d24-005","DOIUrl":"https://doi.org/10.1584/jpestics.d24-005","url":null,"abstract":"</p><p>Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of <i>Blumeria graminis</i> f. sp. <i>tritici</i> on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-005/figure/advpub_D24-005.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates.","authors":"Aoi Kimishima, Atsuka Nishitomi, Iori Tsuruoka, Masako Honsho, Sota Negami, Sota Honma, Katsuyuki Sakai, Toshiyuki Tokiwa, Hiroki Kojima, Kenichi Nonaka, Shin-Ichi Fuji, Takumi Chinen, Takeo Usui, Yukihiro Asami","doi":"10.1584/jpestics.D24-014","DOIUrl":"https://doi.org/10.1584/jpestics.D24-014","url":null,"abstract":"<p><p>An antifungal polyene-decalin polyketide natural product, burnettiene A (<b>1</b>) has been re-discovered from the culture broth of <i>Lecanicillium primulinum</i> (current name: <i>Flavocillium primulinum</i>) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated from <i>Aspergillus burnettii</i>. The antifungal activity of <b>1</b> against <i>Candida albicans</i> has been reported. However, only one fungal species for the antifungal activity of <b>1</b> has been revealed, and details of the antifungal activity against other pathogenic fungus remain unknown. After extensive screening for antifungal activity, we found that <b>1</b> exhibits broad antifungal activity against pathogenic plant fungi, including <i>Colletotrichum gloeosporioides</i>, <i>Botrytis cinerea</i>, <i>Pyricularia oryzae</i>, <i>Leptosphaeria maculans</i>, and <i>Rhizoctonia solani</i>. Furthermore, we synthesized 12 derivatives from <b>1</b> and evaluated their antifungal activity to reveal the detailed structure-activity relationship. The methyl ester derivative showed antifungal activity against <i>Saccharomyces cerevisiae</i> 12geneΔ0HSR-iERG6 100-fold more potent than that of <b>1</b>. Our research indicates that <b>1</b> would be a promising natural product as a new fungicidal candidate and the methyl ester derivative especially has great potential.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 3","pages":"159-167"},"PeriodicalIF":1.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}