{"title":"吡蚜酮对小麦叶片上禾谷蓝霉菌感染过程和细胞学特征的影响","authors":"Munekazu Ogawa, Akihiro Nishimura, Satoshi Araki, Yuzuka Abe, Nanami Kuwahara, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani","doi":"10.1584/jpestics.d24-005","DOIUrl":null,"url":null,"abstract":"</p><p>Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of <i>Blumeria graminis</i> f. sp. <i>tritici</i> on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-005/figure/advpub_D24-005.png\"/>\n<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves\",\"authors\":\"Munekazu Ogawa, Akihiro Nishimura, Satoshi Araki, Yuzuka Abe, Nanami Kuwahara, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani\",\"doi\":\"10.1584/jpestics.d24-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of <i>Blumeria graminis</i> f. sp. <i>tritici</i> on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-005/figure/advpub_D24-005.png\\\"/>\\n<span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.d24-005\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.d24-005","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves
Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of Blumeria graminis f. sp. tritici on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.
期刊介绍:
The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.