{"title":"circ_0134120: a new frontier in understanding postmenopausal osteoporosis pathogenesis","authors":"Junling Wang, Hongyan Zhang, Yue Cao, Irene Ma, Xuefang Liang, Dongfang Xiang","doi":"10.1530/jme-23-0140","DOIUrl":"https://doi.org/10.1530/jme-23-0140","url":null,"abstract":"<p>Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA-miRNA-mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database. By identifying differentially expressed circRNAs and miRNAs, we constructed a circRNA-miRNA-mRNA network and identified key genes associated with OP. Further, through a range of experimental approaches, including dual-luciferase reporter assays, RNA pull-down experiments, and qRT-PCR, we examined the roles of circ_0134120, miR-590-5p, and STAT3 in the progression of OP. Our findings reveal that the interaction between circ_0134120 and miR-590-5p in regulating STAT3 gene expression is a key mechanism in OP, suggesting the circRNA-miRNA-mRNA network ais a potential therapeutic target for this condition.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"50 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Santos-Hernández, Frank Reimann, Fiona M Gribble
{"title":"Cellular mechanisms of incretin hormone secretion.","authors":"Marta Santos-Hernández, Frank Reimann, Fiona M Gribble","doi":"10.1530/JME-23-0112","DOIUrl":"10.1530/JME-23-0112","url":null,"abstract":"<p><p>Enteroendocrine cells located along the gastrointestinal epithelium sense different nutrients/luminal contents that trigger the secretion of a variety of gut hormones with different roles in glucose homeostasis and appetite regulation. The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are involved in the regulation of insulin secretion, appetite, food intake and body weight after their nutrient-induced secretion from the gut. GLP-1 mimetics have been developed and used in the treatment of type 2 diabetes mellitus and obesity. Modulating the release of endogenous intestinal hormones may be a promising approach for the treatment of obesity and type 2 diabetes without surgery. For that reason, current understanding of the cellular mechanisms underlying intestinal hormone secretion will be the focus of this review. The mechanisms controlling hormone secretion depend on the nature of the stimulus, involving a variety of signalling pathways including ion channels, nutrient transporters and G-protein-coupled receptors.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conserved and divergent features of trophoblast stem cells.","authors":"Nirvay Sah, Francesca Soncin","doi":"10.1530/JME-23-0131","DOIUrl":"10.1530/JME-23-0131","url":null,"abstract":"<p><p>Trophoblast stem cells (TSCs) are a proliferative multipotent population derived from the trophectoderm of the blastocyst, which will give rise to all the functional cell types of the trophoblast compartment of the placenta. The isolation and culture of TSCs in vitro represent a robust model to study mechanisms of trophoblast differentiation into mature cells both in successful and diseased pregnancy. Despite the highly conserved functions of the placenta, there is extreme variability in placental morphology, fetal-maternal interface, and development among eutherian mammals. This review aims to summarize the establishment and maintenance of TSCs in mammals such as primates, including human, rodents, and nontraditional animal models with a primary emphasis on epigenetic regulation of their origin while defining gaps in the current literature and areas of further development. FGF signaling is critical for mouse TSCs but dispensable for derivation of TSCs in other species. Human, simian, and bovine TSCs have much more complicated requirements of signaling pathways including activation of WNT and inhibition of TGFβ cascades. Epigenetic features such as DNA and histone methylation as well as histone acetylation are dynamic during development and are expressed in cell- and gestational age-specific pattern in placental trophoblasts. While TSCs from different species seem to recapitulate some select epigenomic features, there is a limitation in the comprehensive understanding of TSCs and how well TSCs retain placental epigenetic marks. Therefore, future studies should be directed at investigating epigenomic features of global and placental-specific gene expression in primary trophoblasts and TSCs.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"N1-methylnicotinamide impairs gestational glucose tolerance in mice.","authors":"Xiaojing Wei, Yutian Tan, Jiaqi Huang, Ximing Dong, Weijie Feng, Tanglin Liu, Zhao Yang, Guiying Yang, Xiao Luo","doi":"10.1530/JME-23-0126","DOIUrl":"10.1530/JME-23-0126","url":null,"abstract":"<p><p>N1-methylnicotinamide (MNAM), a product of methylation of nicotinamide through nicotinamide N-methyltransferase, displays antidiabetic effects in male rodents. This study aimed to evaluate the ameliorative potential of MNAM on glucose metabolism in a gestational diabetes mellitus (GDM) model. C57BL/6N mice were fed with a high-fat diet (HFD) for 6 weeks before pregnancy and throughout gestation to establish the GDM model. Pregnant mice were treated with 0.3% or 1% MNAM during gestation. MNAM supplementation in CHOW diet and HFD both impaired glucose tolerance at gestational day 14.5 without changes in insulin tolerance. However, MNAM supplementation reduced hepatic lipid accumulation as well as mass and inflammation in visceral adipose tissue. MNAM treatment decreased GLUT4 mRNA and protein expression in skeletal muscle, where NAD+ salvage synthesis and antioxidant defenses were dampened. The NAD+/sirtuin system was enhanced in liver, which subsequently boosted hepatic gluconeogenesis. GLUT1 protein was diminished in placenta by MNAM. In addition, weight of placenta, fetus weight, and litter size were not affected by MNAM treatment. The decreased GLUT4 in skeletal muscle, boosted hepatic gluconeogenesis and dampened GLUT1 in placenta jointly contribute to the impairment of glucose tolerance tests by MNAM. Our data provide evidence for the careful usage of MNAM in treatment of GDM.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138460427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudohypoparathyroidism: complex disease variants with unfortunate names.","authors":"Harald Jüppner","doi":"10.1530/JME-23-0104","DOIUrl":"10.1530/JME-23-0104","url":null,"abstract":"<p><p>Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107591503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New methods to investigate the GnRH pulse generator","authors":"Deyana Ivanova, Kevin O'Byrne","doi":"10.1530/jme-23-0079","DOIUrl":"https://doi.org/10.1530/jme-23-0079","url":null,"abstract":"<p>The exact neural construct underlying the dynamic secretion of gonadotropin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinizing hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin, KNDy, neurons in the mammalian hypothalamus there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotropin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator. Understanding the nature and function of the GnRH pulse generator can greatly inform a wide range of clinical studies investigating infertility treatments.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"28 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138578993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan Beetch, Brian Akhaphong, Alicia Wong, Briana Clifton, Seokwon Jo, Ramkumar Mohan, Juan E Abrahante Llorens, Emilyn U Alejandro
{"title":"Impact of placental mTOR deficiency on peripheral insulin signaling in adult mice offspring.","authors":"Megan Beetch, Brian Akhaphong, Alicia Wong, Briana Clifton, Seokwon Jo, Ramkumar Mohan, Juan E Abrahante Llorens, Emilyn U Alejandro","doi":"10.1530/JME-23-0035","DOIUrl":"10.1530/JME-23-0035","url":null,"abstract":"<p><p>Suboptimal in utero environments such as poor maternal nutrition and gestational diabetes can impact fetal birth weight and the metabolic health trajectory of the adult offspring. Fetal growth is associated with alterations in placental mechanistic target of rapamycin (mTOR) signaling; it is reduced in fetal growth restriction and increased in fetal overgrowth. We previously reported that when metabolically challenged by a high-fat diet, placental mTORKO (mTORKOpl) adult female offspring develop obesity and insulin resistance, whereas placental TSC2KO (TSC2KOpl) female offspring are protected from diet-induced obesity and maintain proper glucose homeostasis. In the present study, we sought to investigate whether reducing or increasing placental mTOR signaling in utero alters the programming of adult offspring metabolic tissues preceding a metabolic challenge. Adult male and female mTORKOpl, TSC2KOpl, and respective controls on a normal chow diet were subjected to an acute intraperitoneal insulin injection. Upon insulin stimulation, insulin signaling via phosphorylation of Akt and nutrient sensing via phosphorylation of mTOR target ribosomal S6 were evaluated in the offspring liver, white adipose tissue, and skeletal muscle. Among tested tissues, we observed significant changes only in the liver signaling. In the male mTORKOpl adult offspring liver, insulin-stimulated phospho-Akt was enhanced compared to littermate controls. Basal phospho-S6 level was increased in the mTORKOpl female offspring liver compared to littermate controls and did not increase further in response to insulin. RNA sequencing of offspring liver identified placental mTORC1 programming-mediated differentially expressed genes. The expression of major urinary protein 1 (Mup1) was differentially altered in female mTORKOpl and TSC2KOpl offspring livers and we show that MUP1 level is dependent on overnutrition and fasting status. In summary, deletion of placental mTOR nutrient sensing in utero programs hepatic response to insulin action in a sexually dimorphic manner. Additionally, we highlight a possible role for hepatic and circulating MUP1 in glucose homeostasis that warrants further investigation.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49678605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily M Hawes, Kayla A Boortz, James K Oeser, Margaret L O'Rourke, Richard M O'Brien
{"title":"G6PC1 and G6PC2 influence G6P flux but not HSD11B1 activity.","authors":"Emily M Hawes, Kayla A Boortz, James K Oeser, Margaret L O'Rourke, Richard M O'Brien","doi":"10.1530/JME-23-0070","DOIUrl":"10.1530/JME-23-0070","url":null,"abstract":"<p><p>In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49678604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Débora Elisabet Vélez, Victoria Evangelina Mestre Cordero, Romina Hermann, María de Las Mercedes Fernández Pazos, Federico Joaquín Reznik, Lucia Sánchez, María Gabriela Marina Prendes
{"title":"Erythropoietin-mediated cardioprotection in hearts subjected to ischemia reperfusion.","authors":"Débora Elisabet Vélez, Victoria Evangelina Mestre Cordero, Romina Hermann, María de Las Mercedes Fernández Pazos, Federico Joaquín Reznik, Lucia Sánchez, María Gabriela Marina Prendes","doi":"10.1530/JME-23-0076","DOIUrl":"10.1530/JME-23-0076","url":null,"abstract":"<p><p>Several studies provide evidence that erythropoietin (EPO) could play an important role in the recovery of the heart subjected to ischemia-reperfusion. In this regard, it has been suggested that EPO could be involved in protein kinase B (Akt) activation as a cell survival protein. The aim of the present study was to investigate the effects of EPO on the Akt/glycogen synthase kinase 3 beta (GSK-3β) pathway in the presence or absence of wortmannin (W, Akt inhibitor) and its relationship with mitochondrial morphology and function preservation in ischemic-reperfused rat hearts. EPO improved the functional recovery of the heart subjected to ischemia-reperfusion, reduced the release of CK and the infarct size, and promoted preservation of the mitochondrial structure. Moreover, it reduced tissue lactate content and preserved glycogen in order to prevent ischemia. The results showed greater Akt activation, accompanied by preservation of swelling and mitochondrial calcium retention capacity, as well as an increase in ATP synthesis capacity. These results were accompanied by an inhibition of GSK-3β, suggesting regulation of Akt on the opening of the mitochondrial permeability transition pore. All these beneficial effects exerted by acute treatment with EPO were prevented by W. The present study provided novel evidence that EPO not only enhances intrinsic activation of Akt during myocardial ischemia-reperfusion but also promotes GSK-3β inhibition, contributing to mitochondrial structure and function preservation.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41577503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vascular endothelial mineralocorticoid receptors and epithelial sodium channels in metabolic syndrome and related cardiovascular disease.","authors":"Guanghong Jia, Michael A Hill, James R Sowers","doi":"10.1530/JME-23-0066","DOIUrl":"10.1530/JME-23-0066","url":null,"abstract":"<p><p>Metabolic syndrome is a group of risk factors that increase the risk of developing metabolic and cardiovascular disease (CVD) and include obesity, dyslipidemia, insulin resistance, atherosclerosis, hypertension, coronary artery disease, and heart failure. Recent research indicates that excessive production of aldosterone and associated activation of mineralocorticoid receptors (MR) impair insulin metabolic signaling, promote insulin resistance, and increase the risk of developing metabolic syndrome and CVD. Moreover, activation of specific epithelial sodium channels (ENaC) in endothelial cells (EnNaC), which are downstream targets of endothelial-specific MR (ECMR) signaling, are also believed to play a crucial role in the development of metabolic syndrome and CVD. These adverse effects of ECMR/EnNaC activation are mediated by increased oxidative stress, inflammation, and lipid metabolic disorders. It is worth noting that ECMR/EnNaC activation and the pathophysiology underlying metabolic syndrome and CVD appears to exhibit sexual dimorphism. Targeting ECMR/EnNaC signaling may have a beneficial effect in preventing insulin resistance, diabetes, metabolic syndrome, and related CVD. This review aims to examine our current understanding of the relationship between MR activation and increased metabolic syndrome and CVD, with particular emphasis placed on the role for endothelial-specific ECMR/EnNaC signaling in these pathological processes.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10267089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}