Karina Prins, Noa Mutsters, Femke Volker, Martin Huisman, Rosinda Mies, Patric J D Delhanty, Jenny A Visser
{"title":"Syndecans能调节胃泌素受体的信号转导。","authors":"Karina Prins, Noa Mutsters, Femke Volker, Martin Huisman, Rosinda Mies, Patric J D Delhanty, Jenny A Visser","doi":"10.1530/JME-24-0070","DOIUrl":null,"url":null,"abstract":"<p><p>Ghrelin is a gut hormone that enhances food intake and growth hormone secretion through its G-protein coupled receptor, the growth hormone secretagogue receptor (GHSR). Recently, we have shown that ghrelin interacts with syndecans (SDCs), a family of membrane proteins known to modulate hypothalamic appetite signaling. Here, we investigated whether SDCs impact ghrelin signaling at GHSR by assessing ghrelin-induced intracellular Ca2+ mobilization (iCa2+) and inositol phosphate 1 (IP1) production in HEK293 cells. Compared with controls, the overexpression of SDCs dose-dependently increased the maximum iCa2+ response two- to four-fold, without affecting EC50. The IP1 response was similarly amplified by SDCs, but it also indicated that they reduce constitutive (ghrelin-independent) activity of GHSR. These enhanced responses occurred despite a SDC dose-dependent reduction in plasma membrane GHSR levels. Although ghrelin-stimulated Gαq activation was unaltered by SDC1 expression, it failed to restore iCa2+ responsiveness in GNAQ/11 knockout cells, indicating dependence on Gαq/11, not another Gα subunit. This suggests that SDCs modulate either signaling downstream of Gαq/11 or quenching of β-arrestin2 recruitment to GHSR. Indeed, expression of SDCs at levels that only modestly suppress cell surface receptor reduced ghrelin-induced β-arrestin2 recruitment by ∼80%. SDC co-expression also delayed the peak β-arrestin2 response. However, peak β-arrestin2 recruitment follows the peak iCa2+ response, making it unclear whether reduced β-arrestin2 recruitment potentiated Ca2+ signaling. Altogether, SDCs enhanced iCa2+/IP1 and reduced β-arrestin2 recruitment by GHSR in response to ghrelin, likely by modulating signaling downstream of Gαq. This could be a novel mechanism through which SDCs affect metabolism and obesity.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syndecans modulate ghrelin receptor signaling.\",\"authors\":\"Karina Prins, Noa Mutsters, Femke Volker, Martin Huisman, Rosinda Mies, Patric J D Delhanty, Jenny A Visser\",\"doi\":\"10.1530/JME-24-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ghrelin is a gut hormone that enhances food intake and growth hormone secretion through its G-protein coupled receptor, the growth hormone secretagogue receptor (GHSR). Recently, we have shown that ghrelin interacts with syndecans (SDCs), a family of membrane proteins known to modulate hypothalamic appetite signaling. Here, we investigated whether SDCs impact ghrelin signaling at GHSR by assessing ghrelin-induced intracellular Ca2+ mobilization (iCa2+) and inositol phosphate 1 (IP1) production in HEK293 cells. Compared with controls, the overexpression of SDCs dose-dependently increased the maximum iCa2+ response two- to four-fold, without affecting EC50. The IP1 response was similarly amplified by SDCs, but it also indicated that they reduce constitutive (ghrelin-independent) activity of GHSR. These enhanced responses occurred despite a SDC dose-dependent reduction in plasma membrane GHSR levels. Although ghrelin-stimulated Gαq activation was unaltered by SDC1 expression, it failed to restore iCa2+ responsiveness in GNAQ/11 knockout cells, indicating dependence on Gαq/11, not another Gα subunit. This suggests that SDCs modulate either signaling downstream of Gαq/11 or quenching of β-arrestin2 recruitment to GHSR. Indeed, expression of SDCs at levels that only modestly suppress cell surface receptor reduced ghrelin-induced β-arrestin2 recruitment by ∼80%. SDC co-expression also delayed the peak β-arrestin2 response. However, peak β-arrestin2 recruitment follows the peak iCa2+ response, making it unclear whether reduced β-arrestin2 recruitment potentiated Ca2+ signaling. Altogether, SDCs enhanced iCa2+/IP1 and reduced β-arrestin2 recruitment by GHSR in response to ghrelin, likely by modulating signaling downstream of Gαq. This could be a novel mechanism through which SDCs affect metabolism and obesity.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-24-0070\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-24-0070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Ghrelin is a gut hormone that enhances food intake and growth hormone secretion through its G-protein coupled receptor, the growth hormone secretagogue receptor (GHSR). Recently, we have shown that ghrelin interacts with syndecans (SDCs), a family of membrane proteins known to modulate hypothalamic appetite signaling. Here, we investigated whether SDCs impact ghrelin signaling at GHSR by assessing ghrelin-induced intracellular Ca2+ mobilization (iCa2+) and inositol phosphate 1 (IP1) production in HEK293 cells. Compared with controls, the overexpression of SDCs dose-dependently increased the maximum iCa2+ response two- to four-fold, without affecting EC50. The IP1 response was similarly amplified by SDCs, but it also indicated that they reduce constitutive (ghrelin-independent) activity of GHSR. These enhanced responses occurred despite a SDC dose-dependent reduction in plasma membrane GHSR levels. Although ghrelin-stimulated Gαq activation was unaltered by SDC1 expression, it failed to restore iCa2+ responsiveness in GNAQ/11 knockout cells, indicating dependence on Gαq/11, not another Gα subunit. This suggests that SDCs modulate either signaling downstream of Gαq/11 or quenching of β-arrestin2 recruitment to GHSR. Indeed, expression of SDCs at levels that only modestly suppress cell surface receptor reduced ghrelin-induced β-arrestin2 recruitment by ∼80%. SDC co-expression also delayed the peak β-arrestin2 response. However, peak β-arrestin2 recruitment follows the peak iCa2+ response, making it unclear whether reduced β-arrestin2 recruitment potentiated Ca2+ signaling. Altogether, SDCs enhanced iCa2+/IP1 and reduced β-arrestin2 recruitment by GHSR in response to ghrelin, likely by modulating signaling downstream of Gαq. This could be a novel mechanism through which SDCs affect metabolism and obesity.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.