The role of mu-opioid receptors in pancreatic islet α-cells.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Journal of molecular endocrinology Pub Date : 2024-12-20 Print Date: 2025-01-01 DOI:10.1530/JME-24-0060
Chen Kong, Daniel C Castro, Jeongmin Lee, David W Piston
{"title":"The role of mu-opioid receptors in pancreatic islet α-cells.","authors":"Chen Kong, Daniel C Castro, Jeongmin Lee, David W Piston","doi":"10.1530/JME-24-0060","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a complex disease that impacts more than 500 million people across the world. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is historically treated with exogenous opioids, such as morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in patients. One common feature of these exogenous opioid ligands is their preference for the mu-opioid receptor (MOPR), so we aimed to determine whether endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high-glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is robust in nondiabetic human islets but downregulated in islets from T2D donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine α-cells increases glucagon secretion under high-glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high-fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-24-0060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a complex disease that impacts more than 500 million people across the world. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is historically treated with exogenous opioids, such as morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in patients. One common feature of these exogenous opioid ligands is their preference for the mu-opioid receptor (MOPR), so we aimed to determine whether endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high-glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is robust in nondiabetic human islets but downregulated in islets from T2D donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine α-cells increases glucagon secretion under high-glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high-fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.

胰岛α细胞中缪阿片受体的作用
糖尿病是一种影响全球 5 亿多人的复杂疾病。其中许多人会并发糖尿病神经病变,而历史上治疗糖尿病神经病变的方法是使用吗啡、羟考酮或曲马多等外源性阿片类药物。虽然这些阿片类药物是有效的镇痛剂,但越来越多的证据表明,它们可能会直接影响患者的胰腺内分泌功能。这些外源性阿片配体的一个共同特点是偏好μ阿片受体(MOPR),因此我们的目的是确定内源性MOPR是否直接调节胰岛代谢和激素分泌。我们的研究表明,在高血糖条件下,药理拮抗 MOPRs 能增强人胰岛的胰高血糖素分泌,但不能增强胰岛素分泌。在非糖尿病人胰岛中,MOPRs 的 mRNA 表达很强,但在 T2D 供体的胰岛中则下调,这表明代谢与 MOPRs 的表达之间存在联系。在小鼠α细胞中,MOPRs的条件性基因敲除可增加高血糖条件下的胰高血糖素分泌,但不会增加胰高血糖素含量。条件性 MOPR 基因敲除小鼠经高脂肪饮食治疗后,糖耐量受损、胰高血糖素分泌增加、胰岛素含量增加、胰岛体积增大,这与代谢性疾病期间 MOPR 的下调是一致的。这些结果共同证明了内源性阿片调节胰腺内分泌的直接作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信