Jinrong Fu, Rili Gao, Qiting Ye, Wenwen Feng, He Liu, Yushu Li, Haixia Guan
{"title":"Disruption of thyroid-intrinsic clock aggravates experimental autoimmune thyroiditis.","authors":"Jinrong Fu, Rili Gao, Qiting Ye, Wenwen Feng, He Liu, Yushu Li, Haixia Guan","doi":"10.1530/JME-25-0022","DOIUrl":null,"url":null,"abstract":"<p><p>The core clock gene Bmal1 has been associated with the development of a variety of inflammatory diseases, with its deletion shown to induce or aggravate autoimmune disease in a tissue-specific pattern. Building on our previous findings that light shift can disrupt thyroid clock and exacerbate autoimmune thyroiditis (AIT), we investigated the specific role of the thyroid clock in AIT using a thyrocyte-specific Bmal1 knockdown mouse model (cKO). Our study revealed that Bmal1 knockdown in thyrocytes disrupted the rhythmic expression of intrathyroidal clock genes. Both cKO and Ctrl mice exhibited more severe experimental autoimmune thyroiditis (EAT) when immunized at ZT6 compared to ZT18. However, cKO-EAT mice showed elevated levels of anti-thyroglobulin antibodies (TgAb) and inflammatory cytokines compared to Ctrl-EAT mice, which correlated with CD4+ T cell-mediated immune responses. These findings highlight a novel role for Bmal1 in regulating the thyroid clock and modulating the severity of EAT, uncovering a previously unrecognized connection between circadian regulation and thyroid autoimmune disease.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-25-0022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The core clock gene Bmal1 has been associated with the development of a variety of inflammatory diseases, with its deletion shown to induce or aggravate autoimmune disease in a tissue-specific pattern. Building on our previous findings that light shift can disrupt thyroid clock and exacerbate autoimmune thyroiditis (AIT), we investigated the specific role of the thyroid clock in AIT using a thyrocyte-specific Bmal1 knockdown mouse model (cKO). Our study revealed that Bmal1 knockdown in thyrocytes disrupted the rhythmic expression of intrathyroidal clock genes. Both cKO and Ctrl mice exhibited more severe experimental autoimmune thyroiditis (EAT) when immunized at ZT6 compared to ZT18. However, cKO-EAT mice showed elevated levels of anti-thyroglobulin antibodies (TgAb) and inflammatory cytokines compared to Ctrl-EAT mice, which correlated with CD4+ T cell-mediated immune responses. These findings highlight a novel role for Bmal1 in regulating the thyroid clock and modulating the severity of EAT, uncovering a previously unrecognized connection between circadian regulation and thyroid autoimmune disease.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.