Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
{"title":"Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli.","authors":"Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung","doi":"10.1007/s12275-024-00175-4","DOIUrl":"https://doi.org/10.1007/s12275-024-00175-4","url":null,"abstract":"<p><p>Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower K<sub>M</sub> and a 1.49-fold higher turnover rate (k<sub>cat</sub>/K<sub>M</sub>) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/g<sub>xylose</sub> (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gyungcheon Kim, Seongok Kim, Hayan Jung, Seohyun Kang, Gwoncheol Park, Hakdong Shin
{"title":"The Impact of Makgeolli Consumption on Gut Microbiota: An Enterotype-Based Preliminary Study.","authors":"Gyungcheon Kim, Seongok Kim, Hayan Jung, Seohyun Kang, Gwoncheol Park, Hakdong Shin","doi":"10.1007/s12275-024-00176-3","DOIUrl":"https://doi.org/10.1007/s12275-024-00176-3","url":null,"abstract":"<p><p>Makgeolli, a traditional Korean liquor, contains components such as lactic acid bacteria and dietary fiber, which can induce changes in the gut microbiome. Since variations in microbiome responses may exist between enterotypes-classifications based on the dominant bacterial populations in the gut-we hypothesized that the consumption of makgeolli leads to enterotype-dependent differences in gut microbial structures among healthy participants. This study aimed to determine the effect of makgeolli consumption on gut microbial structures by stratifying all participants into two enterotype groups: Bacteroides-dominant type (B-type, n = 7) and Prevotella-dominant type (P-type, n = 4). The B-type showed an increase in alpha diversity, while no significant difference was observed in the P-type following makgeolli consumption. The composition of gut microbiota significantly changed in the B-type, whereas no noticeable alteration was observed in the P-type after makgeolli consumption. Notably, Prevotella exhibited the most significant changes only in the P-type. In line with the increased abundance of Prevotella, the genes associated with carbohydrate metabolism, including pentose/glucuronate interconversions, fructose/mannose metabolism, starch/sucrose metabolism and amino sugar/nucleotide sugar metabolism were significantly enriched following makgeolli consumption in the P-type. These findings suggest that makgeolli consumption induces enterotype-dependent alterations in gut microbial composition and metabolic pathways, highlighting the potential for personalized dietary interventions.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park
{"title":"Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems.","authors":"Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park","doi":"10.1007/s12275-024-00172-7","DOIUrl":"https://doi.org/10.1007/s12275-024-00172-7","url":null,"abstract":"<p><p>Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of MicrobiologyPub Date : 2024-10-01Epub Date: 2024-09-30DOI: 10.1007/s12275-024-00165-6
Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han
{"title":"Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG as a Novel Intracanal Medicament Targeting Enterococcus faecalis Biofilm Formation.","authors":"Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han","doi":"10.1007/s12275-024-00165-6","DOIUrl":"10.1007/s12275-024-00165-6","url":null,"abstract":"<p><p>The demand for safe and effective endodontic medicaments to control Enterococcus faecalis biofilms, a contributor to apical periodontitis, is increasing. Recently, lipoteichoic acid (LTA) of family Lactobacillaceae has been shown to have anti-biofilm effects against various oral pathogens. Preliminary experiments showed that LTA purified from Lacticaseibacillus rhamnosus GG (Lgg.LTA) was the most effective against E. faecalis biofilms among LTAs from three Lactobacillaceae including L. rhamnosus GG, Lacticaseibacillus casei, and Lactobacillus acidophilus. Therefore, in this study, we investigated the potential of Lgg.LTA as an intracanal medicament in human root canals infected with E. faecalis. Twenty eight dentinal cylinders were prepared from extracted human teeth, where two-week-old E. faecalis biofilms were formed followed by intracanal treatment with sterile distilled water (SDW), N-2 methyl pyrrolidone (NMP), calcium hydroxide (CH), or Lgg.LTA. Bacteria and biofilms that formed in the root canals were analyzed by scanning electron microscopy and confocal laser scanning microscopy. The remaining E. faecalis cells in the root canals after intracanal medicament treatment were enumerated by culturing and counting. When applied to intracanal biofilms, Lgg.LTA effectively inhibited E. faecalis biofilm formation as much as CH, while SDW and NMP had little effect. Furthermore, Lgg.LTA reduced both live and dead bacteria within the dentinal tubules, indicating the possibility of minimal re-infection in the root canals. Collectively, intracanal application of Lgg.LTA effectively inhibited E. faecalis biofilm formation, implying that Lgg.LTA can be used as a novel endodontic medicament.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"897-905"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of MicrobiologyPub Date : 2024-10-01Epub Date: 2024-10-08DOI: 10.1007/s12275-024-00163-8
Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang
{"title":"Upgrading Isoquercitrin Concentration via Submerge Fermentation of Mulberry Fruit Extract with Edible Probiotics to Suppress Gene Targets for Controlling Kidney Cancer and Inflammation.","authors":"Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang","doi":"10.1007/s12275-024-00163-8","DOIUrl":"10.1007/s12275-024-00163-8","url":null,"abstract":"<p><p>In recent years, kidney cancer has become one of the most serious medical issues. Kidney cancer is treated with a variety of active compounds that trigger genes that cause cancer. We identified in our earlier research that isoquercitrin (IQ) can activate PIK3CA, IGF1R, and PTGS2. However, it has a very low bioavailability because of its lower solubility in water. So, we utilized sub-merge fermentation technology with two well-known probiotics, Lactobacillus acidophilus and Bacillus subtilis, as a microbial source and mulberry fruit extract as a substrate, which has a high IQ level to improve IQ yield. Furthermore, we compared the total phenolic, flavonoid, and antioxidant contents of fermented and non-fermented samples, and we found that the fermented samples had greater levels than non-fermented sample. In addition, the high-performance liquid chromatography (HPLC) results showed that the fermented mulberry fruit extract from B. subtilis and L. acidophilus showed higher IQ values (190.73 ± 0.004 μg/ml and 220.54 ± 0.007 μg/ml, respectively), compared to the non-fermented samples, which had IQ values (80.12 ± 0.002 μg/ml). Additionally, at 62.5 µg/ml doses of each sample, a normal kidney cell line (HEK 293) showed higher cell viability for fermented and non-fermented samples. Conversely, at the same doses, the fermented samples of L. acidophilus and B. subtilis in a kidney cancer cell line (A498) showed an inhibition of cell growth around 36% and 31%, respectively. Finally, we performed RT and qRT PCR assay, and we found a significant reduction in the expression of the PTGS2, PIK3CA, and IGF1R genes. We therefore can conclude that the fermented samples have a higher concentration of isoquercitrin, and also can inhibit the expression of the genes PTGS2, PIK3CA, and IGF1R, which in turn regulates kidney cancer and inflammation.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"919-927"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of MicrobiologyPub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.1007/s12275-024-00169-2
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
{"title":"Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein.","authors":"Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn","doi":"10.1007/s12275-024-00169-2","DOIUrl":"10.1007/s12275-024-00169-2","url":null,"abstract":"<p><p>The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"871-882"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of MicrobiologyPub Date : 2024-10-01Epub Date: 2024-09-03DOI: 10.1007/s12275-024-00164-7
Lu Li, Jian-Yong Sun, Yu-Lin Li, Shi-Wei Zhu, Sheng-Zhong Duan
{"title":"The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction.","authors":"Lu Li, Jian-Yong Sun, Yu-Lin Li, Shi-Wei Zhu, Sheng-Zhong Duan","doi":"10.1007/s12275-024-00164-7","DOIUrl":"10.1007/s12275-024-00164-7","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a type of cardiovascular disease that influences millions of human beings worldwide and has a great rate of mortality and morbidity. Spironolactone has been used as a critical drug for the treatment of cardiac failure and it ameliorates cardiac dysfunction post-MI. Despite these findings, whether there is a relationship between the therapeutic effects of spironolactone and the gut microorganism after MI has not been determined. In our research, we used male C57BL/6 J mice to explore whether the gut microbiota mediates the beneficial function of spironolactone after myocardial infarction. We demonstrated that deletion of the gut microbiota eliminated the beneficial function of spironolactone in MI mice, displaying exacerbated cardiac dysfunction, cardiac infarct size. In addition, the gut microbiota was altered by spironolactone after sham or MI operation in mice. We also used male C57BL/6 J mice to investigate the function of a probiotic in the myocardial infarction. In summary, our findings reveal a precious role of the gut flora in the therapeutic function of spironolactone on MI.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"883-895"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Whole-Genome Sequencing Reveals the Population Structure and Genetic Diversity of Salmonella Typhimurium ST34 and ST19 Lineages.","authors":"Zhen-Xu Zhuo, Yu-Lian Feng, Xi-Wei Zhang, Hao Liu, Fang-Yin Zeng, Xiao-Yan Li","doi":"10.1007/s12275-024-00170-9","DOIUrl":"10.1007/s12275-024-00170-9","url":null,"abstract":"<p><p>Salmonella Typhimurium is an invasive gastrointestinal pathogen for both humans and animals. To investigate the genetic framework and diversity of S. Typhimurium, a total of 194 S. Typhimurium isolates were collected from patients in a tertiary hospital between 2020 and 2021. Antimicrobial susceptibility testing was used to confirm the resistance phenotype. Whole-genome sequencing and bioinformatics analysis were performed to determine the sequence type, phylogenetic relationships, resistance gene profiles, Salmonella pathogenicity island (SPI) and the diversity of the core and pan genome. The result showed that 57.22% of S. Typhimurium isolates were multidrug resistant and resistance of total isolates to the first-line drug ciprofloxacin was identified in 60.82%. The population structure of S. Typhimurium was categorized into three lineages: ST19 (20.10%, 39/194), ST34-1 (47.42%, 92/194) and ST34-2 (40.65%, 63/194), with the population size exhibiting increasing trends. All lineages harbored variety of fimbrial operons, prophages, SPIs and effectors that contributed to the virulence and long-term infections of S. Typhimurium. Importantly, ST34-1 lineage might potentially be more invasive due to the possession of SPI1-effector gene sopE which was essential for the proliferation, internalization and intracellular presence of S. Typhimurium in hosts. Multiple antimicrobial resistance genes were characteristically distributed across three lineages, especially carbapenem genes only detected in ST34-1&2 lineages. The distinct functional categories of pan genome among three lineages were observed in metabolism, signaling and gene information processing. This study provides a theoretical foundation for the evolved adaptation and genetic diversity of S. Typhimurium ST19 and ST34, among which ST34 lineages with multidrug resistance and potential hypervirulence need to pay more attention to epidemiological surveillance.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"859-870"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum: Analyses of DNA Double-Strand Break Repair Pathways in Tandem Arrays of HXT Genes of Saccharomyces Cerevisiae.","authors":"Ju-Hee Choi, Ye-Seul Lim, Min-Ku Kim, Sung-Ho Bae","doi":"10.1007/s12275-024-00127-y","DOIUrl":"10.1007/s12275-024-00127-y","url":null,"abstract":"","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"931"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of MicrobiologyPub Date : 2024-10-01Epub Date: 2024-08-30DOI: 10.1007/s12275-024-00166-5
Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He
{"title":"Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea.","authors":"Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He","doi":"10.1007/s12275-024-00166-5","DOIUrl":"10.1007/s12275-024-00166-5","url":null,"abstract":"<p><p>This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 10<sup>2</sup> to 2.17 × 10<sup>6</sup> copies per gram of sediment and from 6.6 × 10<sup>1</sup> to 7.65 × 10<sup>4</sup> copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"845-858"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}