Journal of Microbiology最新文献

筛选
英文 中文
Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29. 新分离的卤化芽孢杆菌 F29 生产聚-γ-谷氨酸的能力增强
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-08-20 DOI: 10.1007/s12275-024-00153-w
Xiaorong Sun, Yaoyu Cai, Dexin Wang
{"title":"Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29.","authors":"Xiaorong Sun, Yaoyu Cai, Dexin Wang","doi":"10.1007/s12275-024-00153-w","DOIUrl":"10.1007/s12275-024-00153-w","url":null,"abstract":"<p><p>Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K<sub>2</sub>HPO<sub>4</sub>. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes. 自养到异养:南极冰洞融化季节细菌功能的转变。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-05-30 DOI: 10.1007/s12275-024-00140-1
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
{"title":"Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes.","authors":"Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban","doi":"10.1007/s12275-024-00140-1","DOIUrl":"10.1007/s12275-024-00140-1","url":null,"abstract":"<p><p>Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells. Rab GTPases 在细菌逃离宿主细胞囊泡运输过程中的作用
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-08-30 DOI: 10.1007/s12275-024-00162-9
Huiling Xu, Shengnan Wang, Xiaozhou Wang, Pu Zhang, Qi Zheng, ChangXi Qi, Xiaoting Liu, Muzi Li, Yongxia Liu, Jianzhu Liu
{"title":"Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells.","authors":"Huiling Xu, Shengnan Wang, Xiaozhou Wang, Pu Zhang, Qi Zheng, ChangXi Qi, Xiaoting Liu, Muzi Li, Yongxia Liu, Jianzhu Liu","doi":"10.1007/s12275-024-00162-9","DOIUrl":"10.1007/s12275-024-00162-9","url":null,"abstract":"<p><p>Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Seed Germination of Cremastra appendiculata: Screening and Identification of Four New Symbiotic Fungi in the Psathyrellaceae Family. 提高Cremastra appendiculata种子的发芽率:筛选和鉴定四种新的共生真菌(Psathyrellaceae)。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.1007/s12275-024-00148-7
Zhangneng Pan, Jing Wang, Shanshan He, Haiyang Zhao, Xinyue Dong, Tao Feng, Yanyan Meng, Xiaojun Li
{"title":"Enhancing Seed Germination of Cremastra appendiculata: Screening and Identification of Four New Symbiotic Fungi in the Psathyrellaceae Family.","authors":"Zhangneng Pan, Jing Wang, Shanshan He, Haiyang Zhao, Xinyue Dong, Tao Feng, Yanyan Meng, Xiaojun Li","doi":"10.1007/s12275-024-00148-7","DOIUrl":"10.1007/s12275-024-00148-7","url":null,"abstract":"<p><p>Several coprinoid fungi have been identified as promotors of Cremastra appendiculata seed germination, while others appear ineffective. This study aimed to discern which genera within the Psathyrellaceae family exhibit this capability and to identify the most effective coprinoid fungi for the cultivation of C. appendiculata. We collected 21 coprinoid fungi from diverse sources and symbiotically cultured them with C. appendiculata seeds. 9 fungi were found to induce seed germination and support seed development, specifically within the genera Coprinellus, Tulosesus, and Candolleomyces. In contrast, fungi that failed to promote germination predominantly belonged to the genera Coprinopsis and Parasola. Notably, four fungi-Coprinellus xanthothrix, Coprinellus pseudodisseminatus, Psathyrella singeri, and Psathyrella candolleana-were documented for the first time as capable of enhancing C. appendiculata seed germination. Strain 218LXJ-10, identified as Coprinellus radians, demonstrated the most significant effect and has been implemented in large-scale production, underscoring its considerable practical value. These findings contribute vital scientific insights for the conservation and sustainable use of C. appendiculata resources.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cultivation of Diverse Novel Marine Bacteria from Deep Ocean Sediment Using Spent Culture Supernatant of Ca. Bathyarchaeia Enrichment. 利用钙培养液培养深海沉积物中的多种新型海洋细菌Bathyarchaeia Enrichment.
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-07-10 DOI: 10.1007/s12275-024-00145-w
Sidra Erum Ishaq, Tariq Ahmad, Lewen Liang, Ruize Xie, Tiantian Yu, Yinzhao Wang, Fengping Wang
{"title":"Cultivation of Diverse Novel Marine Bacteria from Deep Ocean Sediment Using Spent Culture Supernatant of Ca. Bathyarchaeia Enrichment.","authors":"Sidra Erum Ishaq, Tariq Ahmad, Lewen Liang, Ruize Xie, Tiantian Yu, Yinzhao Wang, Fengping Wang","doi":"10.1007/s12275-024-00145-w","DOIUrl":"10.1007/s12275-024-00145-w","url":null,"abstract":"<p><p>Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast. 非线粒体扣环酶-2 在裂殖酵母中介导核编码电子传递链基因的转录
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-06-25 DOI: 10.1007/s12275-024-00147-8
Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim
{"title":"Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.","authors":"Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim","doi":"10.1007/s12275-024-00147-8","DOIUrl":"10.1007/s12275-024-00147-8","url":null,"abstract":"<p><p>Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall. 跳蚤草(Adenosma buchneroides Bonati)通过破坏细胞壁对白色念珠菌起到杀菌作用。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-07-03 DOI: 10.1007/s12275-024-00146-9
Youwei Wu, Hongxia Zhang, Hongjie Chen, Zhizhi Du, Qin Li, Ruirui Wang
{"title":"Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall.","authors":"Youwei Wu, Hongxia Zhang, Hongjie Chen, Zhizhi Du, Qin Li, Ruirui Wang","doi":"10.1007/s12275-024-00146-9","DOIUrl":"10.1007/s12275-024-00146-9","url":null,"abstract":"<p><p>Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis. 肠球菌噬菌体 vB_EfaS_HEf13 作为粪肠球菌的抗生物膜剂。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI: 10.1007/s12275-024-00150-z
Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
{"title":"Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis.","authors":"Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han","doi":"10.1007/s12275-024-00150-z","DOIUrl":"10.1007/s12275-024-00150-z","url":null,"abstract":"<p><p>Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole Genome Sequence Analysis of Brucella spp. from Human, Livestock, and Wildlife in South Africa. 南非人、牲畜和野生动物布鲁氏菌全基因组序列分析。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-07-22 DOI: 10.1007/s12275-024-00155-8
Koketso Desiree Mazwi, Kgaugelo Edward Lekota, Barbara Akofo Glover, Francis Babaman Kolo, Ayesha Hassim, Jenny Rossouw, Annelize Jonker, Justnya Maria Wojno, Giuseppe Profiti, Pier Luigi Martelli, Rita Casadio, Katiuscia Zilli, Anna Janowicz, Francesca Marotta, Giuliano Garofolo, Henriette van Heerden
{"title":"Whole Genome Sequence Analysis of Brucella spp. from Human, Livestock, and Wildlife in South Africa.","authors":"Koketso Desiree Mazwi, Kgaugelo Edward Lekota, Barbara Akofo Glover, Francis Babaman Kolo, Ayesha Hassim, Jenny Rossouw, Annelize Jonker, Justnya Maria Wojno, Giuseppe Profiti, Pier Luigi Martelli, Rita Casadio, Katiuscia Zilli, Anna Janowicz, Francesca Marotta, Giuliano Garofolo, Henriette van Heerden","doi":"10.1007/s12275-024-00155-8","DOIUrl":"https://doi.org/10.1007/s12275-024-00155-8","url":null,"abstract":"<p><p>Brucellosis is an economically important zoonotic disease affecting humans, livestock, and wildlife health globally and especially in Africa. Brucella abortus and B. melitensis have been isolated from human, livestock (cattle and goat), and wildlife (sable) in South Africa (SA) but with little knowledge of the population genomic structure of this pathogen in SA. As whole genome sequencing can assist to differentiate and trace the origin of outbreaks of Brucella spp. strains, the whole genomes of retrospective isolates (n = 19) from previous studies were sequenced. Sequences were analysed using average nucleotide identity (ANI), pangenomics, and whole genome single nucleotide polymorphism (wgSNP) to trace the geographical origin of cases of brucellosis circulating in human, cattle, goats, and sable from different provinces in SA. Pangenomics analysis of B. melitensis (n = 69) and B. abortus (n = 56) was conducted with 19 strains that included B. abortus from cattle (n = 3) and B. melitensis from a human (n = 1), cattle (n = 1), goat (n = 1), Rev1 vaccine strain (n = 1), and sable (n = 12). Pangenomics analysis of B. melitensis genomes, highlighted shared genes, that include 10 hypothetical proteins and genes that encodes for acetyl-coenzyme A synthetase (acs), and acylamidase (aam) amongst the sable genomes. The wgSNP analysis confirmed the B. melitensis isolated from human was more closely related to the goat from the Western Cape Province from the same outbreak than the B. melitensis cattle sample from different cases in the Gauteng Province. The B. melitensis sable strains could be distinguished from the African lineage, constituting their own African sub-clade. The sequenced B. abortus strains clustered in the C2 lineage that is closely related to the isolates from Mozambique and Zimbabwe. This study identified genetically diverse Brucella spp. among various hosts in SA. This study expands the limited known knowledge regarding the presence of B. melitensis in livestock and humans in SA, further building a foundation for future research on the distribution of the Brucella spp. worldwide and its evolutionary background.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mammaliicoccus sciuri's Pan-Immune System and the Dynamics of Horizontal Gene Transfer Among Staphylococcaceae: a One-Health CRISPR Tale. Mammaliicoccus sciuri 的泛免疫系统与葡萄球菌之间的水平基因转移动态:一个健康 CRISPR 故事。
IF 3.3 4区 生物学
Journal of Microbiology Pub Date : 2024-07-22 DOI: 10.1007/s12275-024-00156-7
Allan de Carvalho, Marcia Giambiagi-deMarval, Ciro César Rossi
{"title":"Mammaliicoccus sciuri's Pan-Immune System and the Dynamics of Horizontal Gene Transfer Among Staphylococcaceae: a One-Health CRISPR Tale.","authors":"Allan de Carvalho, Marcia Giambiagi-deMarval, Ciro César Rossi","doi":"10.1007/s12275-024-00156-7","DOIUrl":"https://doi.org/10.1007/s12275-024-00156-7","url":null,"abstract":"<p><p>Recently emancipated from the Staphylococcus genus due to genomic differences, Mammaliicoccus sciuri, previously classified as an occasional pathogen, emerges as a significant player in the landscape of resistance gene dissemination among Staphylococcaceae. Despite its classification, its role remained enigmatic. In this study, we delved into the genomic repertoire of M. sciuri to unravel its contribution to resistance and virulence gene transfer in the context of One Health. Through comprehensive analysis of publicly available genomes, we unveiled a diverse pan-immune system adept at defending against exogenous genetic elements, yet concurrently fostering horizontal gene transfer (HGT). Specifically, exploration of CRISPR-Cas systems, with spacer sequences as molecular signatures, elucidated a global dissemination pattern spanning environmental, animal, and human hosts. Notably, we identified the integration of CRISPR-Cas systems within SCCmecs (Staphylococcal Cassette Chromosome mec), harboring key genes associated with pathogenicity and resistance, especially the methicillin resistance gene mecA, suggesting a strategic adaptation to outcompete other mobile genetic elements. Our findings underscored M. sciuri's active engagement in HGT dynamics and evolutionary trajectories within Staphylococcaceae, emphasizing its central role in shaping microbial communities and highlighting the significance of understanding its implications in the One Health framework, an interdisciplinary approach that recognizes the interconnectedness of human, animal, and environmental health to address global health challenges.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信