{"title":"Antifungal effects of Metformin against Candida albicans by autophagy regulation.","authors":"Xiao Zhao, Yang Wang, Qinqin Zhang, Yun Huang, Xin Wei, Daming Wu","doi":"10.71150/jm.2411008","DOIUrl":null,"url":null,"abstract":"<p><p>Candida albicans (C. albicans) is a common opportunistic fungal pathogen that can cause infections ranging from superficial to severe systemic diseases. This study investigates the antifungal effects of metformin on C. albicans and explores its underlying mechanisms. Growth inhibition was assessed via XTT assays, and hyphal formation and morphological changes were observed by light microscope and scanning electron microscopy (SEM). Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were measured with JC-1 and DCFH-DA probes, respectively. Gene expression related to ROS and autophagy was quantified by RT-qPCR, and autophagosomes were visualized using transmission electron microscopy (TEM). Metformin significantly inhibited C. albicans growth and hyphal formation, altered cell morphology, reduced MMP, and increased ROS levels. It activated autophagy in planktonic C. albicans but suppressed it in biofilm forms. Additionally, metformin exhibited synergistic effects with amphotericin B against planktonic C. albicans and with caspofungin against biofilms. The findings suggest that metformin exerts antifungal activity by modulating MMP, ROS levels, and autophagy-related pathways, and enhances the efficacy of specific antifungal drugs.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 4","pages":"e2411008"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2411008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans (C. albicans) is a common opportunistic fungal pathogen that can cause infections ranging from superficial to severe systemic diseases. This study investigates the antifungal effects of metformin on C. albicans and explores its underlying mechanisms. Growth inhibition was assessed via XTT assays, and hyphal formation and morphological changes were observed by light microscope and scanning electron microscopy (SEM). Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were measured with JC-1 and DCFH-DA probes, respectively. Gene expression related to ROS and autophagy was quantified by RT-qPCR, and autophagosomes were visualized using transmission electron microscopy (TEM). Metformin significantly inhibited C. albicans growth and hyphal formation, altered cell morphology, reduced MMP, and increased ROS levels. It activated autophagy in planktonic C. albicans but suppressed it in biofilm forms. Additionally, metformin exhibited synergistic effects with amphotericin B against planktonic C. albicans and with caspofungin against biofilms. The findings suggest that metformin exerts antifungal activity by modulating MMP, ROS levels, and autophagy-related pathways, and enhances the efficacy of specific antifungal drugs.
期刊介绍:
Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.