肉鸡对头孢噻肟耐药大肠杆菌的全基因组鉴定和全球系统发育比较。

IF 3.3 4区 生物学 Q2 MICROBIOLOGY
Journal of Microbiology Pub Date : 2025-04-01 Epub Date: 2025-04-29 DOI:10.71150/jm.2412009
Shahana Ahmed, Tridip Das, Chandan Nath, Tahia Ahmed, Keya Ghosh, Pangkaj Kumar Dhar, Ana Herrero-Fresno, Himel Barua, Paritosh Kumar Biswas, Md Zohorul Islam, John Elmerdahl Olsen
{"title":"肉鸡对头孢噻肟耐药大肠杆菌的全基因组鉴定和全球系统发育比较。","authors":"Shahana Ahmed, Tridip Das, Chandan Nath, Tahia Ahmed, Keya Ghosh, Pangkaj Kumar Dhar, Ana Herrero-Fresno, Himel Barua, Paritosh Kumar Biswas, Md Zohorul Islam, John Elmerdahl Olsen","doi":"10.71150/jm.2412009","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 4","pages":"e2412009"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens.\",\"authors\":\"Shahana Ahmed, Tridip Das, Chandan Nath, Tahia Ahmed, Keya Ghosh, Pangkaj Kumar Dhar, Ana Herrero-Fresno, Himel Barua, Paritosh Kumar Biswas, Md Zohorul Islam, John Elmerdahl Olsen\",\"doi\":\"10.71150/jm.2412009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.</p>\",\"PeriodicalId\":16546,\"journal\":{\"name\":\"Journal of Microbiology\",\"volume\":\"63 4\",\"pages\":\"e2412009\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.71150/jm.2412009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2412009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性(AMR)对公共卫生构成严重威胁,在肠杆菌科,特别是大肠杆菌中出现了广谱β -内酰胺酶(ESBLs),引起了重大关注。本研究旨在阐明抗微生物药物耐药性的驱动因素,以及耐头孢噻肟大肠杆菌(CREC)菌株的全球传播。采用全基因组测序(WGS)探索基因组水平特征,并进行系统发育分析,将本研究中从孟加拉国肉鸡养殖场分离的20株CREC菌株与来自多个国家和宿主的全球收集的CREC菌株(n = 456)进行比较。MIC分析显示,70%以上的肉鸡分离株头孢噻肟的MIC值≥256 mg/L。值得注意的是,到生产周期结束时,85%的研究农场(17/20)的CREC检测呈阳性,CREC计数从第1天的0.83±1.75 log10 CFU/g粪便增加到第28天的5.24±0.72 log10 CFU/g粪便。WGS显示存在多种耐药基因,包括blaCTX-M,在30%的菌株中发现。系统发育比较表明,孟加拉菌株与来自不同地理区域和宿主物种的菌株亲缘关系密切。本研究对CREC的分子流行病学有了全面的了解。孟加拉国菌株与全球菌株之间密切的系统发育关系表明,头孢噻肟耐药细菌广泛存在,并强调了监测食品生产动物中抗菌素耐药性以减轻耐药菌株传播的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens.

Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microbiology
Journal of Microbiology 生物-微生物学
CiteScore
5.70
自引率
3.30%
发文量
0
审稿时长
3 months
期刊介绍: Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信