Journal of nanoscience and nanotechnology最新文献

筛选
英文 中文
Cadmium Sulfide (CdS) Thin Films with Improved Morphology for Humidity Sensing by Chemical Bath Deposition at Lower pH. 在低pH下化学浴沉积具有改善形态的硫化镉(CdS)薄膜用于湿度传感。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19521
Sucheta Sengupta, Avshish Kumar, V K Jain
{"title":"Cadmium Sulfide (CdS) Thin Films with Improved Morphology for Humidity Sensing by Chemical Bath Deposition at Lower pH.","authors":"Sucheta Sengupta,&nbsp;Avshish Kumar,&nbsp;V K Jain","doi":"10.1166/jnn.2021.19521","DOIUrl":"https://doi.org/10.1166/jnn.2021.19521","url":null,"abstract":"<p><p>Cadmium sulfide (CdS), an II-VI group semiconductor material, is one of the most investigated semiconductors in thin film form. In this work, we synthesized CdS thin films with improved film morphology in the presence of ethylene diamine (EA) as the complexing agent by chemical bath deposition (CD) at lower pH. Detailed characterization reveals the presence of cubic phase CdS with a band gap of 2.39 eV with the resultant morphology significantly influenced by the composition of the growth solution. The resultant CdS films finds prospective application as a humidity sensor with a high sensor response of 2.61 corresponding to 80% relative humidity.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6035-6040"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration. 利用边缘波纹设计之字形蓝色磷磷和砷纳米带的能带结构:第一性原理的探索。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19510
Aditya Dey, Debalina Chakraborty
{"title":"Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration.","authors":"Aditya Dey,&nbsp;Debalina Chakraborty","doi":"10.1166/jnn.2021.19510","DOIUrl":"https://doi.org/10.1166/jnn.2021.19510","url":null,"abstract":"<p><p>Using first principles calculations, we have presented a short study on modulation of band structures and electronic properties of zigzag blue phosphorene (ZbPNR) and arsenene nanoribbons (ZANR) by etching the edges of NRs. We have taken the width of both NRs as <i>N</i> = 8 and corrugated the edges in a cosine-like manner. Optimizing every structure and further investigating their stabilities, it was seen that both the etched NRs are energetically feasible. From the computed band structures, the band gaps were seen to be increased for both the NRs on increasing number of etched layers and direct gap semiconductor nature was recorded. Highest energy gap observed were 2.26 and 2.41 eV for ZbPNR and ZANR, respectively. On further application of electric field, we observed the very interesting semiconductor-to-metallic property transition which was explained by wave function plots. Being elements of same group, a similar trend of band gaps modulations was observed for both NRs. This fascinating method of electronic property tuning of the studied NRs can be useful in various nanoscale electronic applications.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5929-5936"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Impact of Synthesis Methods on Structural and Antifungal Properties of Metal Sulfide Nanoparticles. 合成方法对金属硫化物纳米颗粒结构和抗真菌性能的影响。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19515
Radha Ahuja, Anjali Sidhu, Anju Bala
{"title":"Impact of Synthesis Methods on Structural and Antifungal Properties of Metal Sulfide Nanoparticles.","authors":"Radha Ahuja,&nbsp;Anjali Sidhu,&nbsp;Anju Bala","doi":"10.1166/jnn.2021.19515","DOIUrl":"https://doi.org/10.1166/jnn.2021.19515","url":null,"abstract":"<p><p>Nanotechnology has the ability to produce novel nano-sized materials with excellent physical and chemical properties to act against phytopathogenic diseases, essential for revolution of agriculture and food industry. The development of facile, reliable and eco-friendly processes for the synthesis of biologically active nanomaterials is an important aspect of nanotechnology. In the present paper, we attempted to compare sonochemical and co-precipitation method for the synthesis of metal sulfide nanoparticles (MS-NPs) for their structural and antifungal properties against various phytopathogenic fungi of rice. The preparation of nanospheres (NSs) and nano rods (NRs) of CuS, FeS and MnS was monitored by UV-Visible spectroscopy complemented by transmission electron microscope (TEM), scanning electron microscope (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Zeta potential analyser. Sonochemical method resulted in formation of spherical shaped nanoparticles of size (7-120 nm), smaller than those of nanorods (50-200 nm) prepared by co-precipitation produced. It was observed that the metal sulfide nanospheres exhibited a better antifungal potential against <i>D. oryzae, C. lunata and S. oryzae</i> as compared to rod shaped metal sulfide nanoparticles. Smaller size and large surface area of spherical shaped particles opens up an important perspective of the prepared MS-NPs.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5896-5905"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on Cavitation and Tribological of TiO₂ Nano-Film on Bearing Pads Surface. 轴承垫表面二氧化钛纳米膜的空化与摩擦学研究。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19506
Juan Zhang, Donghui Li, Bo Zhang
{"title":"Study on Cavitation and Tribological of TiO₂ Nano-Film on Bearing Pads Surface.","authors":"Juan Zhang,&nbsp;Donghui Li,&nbsp;Bo Zhang","doi":"10.1166/jnn.2021.19506","DOIUrl":"https://doi.org/10.1166/jnn.2021.19506","url":null,"abstract":"<p><p>Bearings play a vital role in the operation of a two-axis system. Long-term bearing use inevitably produce bubbles and frictional damage. Therefore, the protection of bearings is critical for the stable operation of a two-axis system. In this study, a TiO₂ nanofilm is used to physically protect a bearing. The discretization method is used to analyse the cavitation process. Cavitation primarily occurs on the front surface of the pad during bearing operation. A finite element analysis of a bearing pad coated and not coated with TiO₂ nanofilms shows that TiO₂ nanofilms can effectively absorb the cavitation force exerted on pads, thereby reducing inflicted damage. Moreover, the TiO₂ nanofilm reduces the friction coefficient of the pad surface, promoting good bearing capacity of the bearing during rotation. The TiO₂ nanofilm serves as a protective layer that improves the anti-wear and bearing performance of a two-axis system.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5906-5911"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potato Peel Based Carbon-Sulfur Composite as Cathode Materials for Lithium Sulfur Battery. 马铃薯皮碳硫复合材料作为锂硫电池正极材料。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19288
Arenst Andreas Arie, Shealyn Lenora, Hans Kristianto, Ratna Frida Susanti, Joong Kee Lee
{"title":"Potato Peel Based Carbon-Sulfur Composite as Cathode Materials for Lithium Sulfur Battery.","authors":"Arenst Andreas Arie,&nbsp;Shealyn Lenora,&nbsp;Hans Kristianto,&nbsp;Ratna Frida Susanti,&nbsp;Joong Kee Lee","doi":"10.1166/jnn.2021.19288","DOIUrl":"https://doi.org/10.1166/jnn.2021.19288","url":null,"abstract":"<p><p>Lithium sulfur battery has become one of the promising rechargeable battery systems to replace the conventional lithium ion battery. Commonly, it uses carbon-sulfur composites as cathode materials. Biomass based carbons has an important role in enhancing its electrochemical characteristics due to the high conductivity and porous structures. Here, potato peel wastes have been utilized to prepare porous carbon lithium sulfur battery through hydrothermal carbonization followed by the chemical activation method using KOH. After sulfur loading, as prepared carbon-sulfur composite shows stable coulombic efficiencies of above 98% and a reversible specific capacity of 804 mAh g<sup>-1</sup> after 100 cycles at current density of 100 mA g<sup>-1</sup>. These excellent electrochemical properties can be attributed to the unique structure of PPWC showing mesoporous structure with large specific surface areas. These results show the potential application of potato peel waste based porous carbon as electrode's materials for lithium sulfur battery.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6243-6247"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Elevated Electrochemical Performance of LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ Cathodes with Tris(2,2,2-trifluoroethyl) Phosphite as an Efficient Electrolyte Additive. 三(2,2,2-三氟乙基)亚磷酸酯作为高效电解质添加剂提高LiNi0.1Mg0.1Co0.8O₂和LiFePO₄阴极的电化学性能
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19322
S Arockia Shyamala Paniyarasi, S Padmaja, M Pushpa Selvi, R M Gnanamuthu, R Nimma Elizabeth
{"title":"Elevated Electrochemical Performance of LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ Cathodes with Tris(2,2,2-trifluoroethyl) Phosphite as an Efficient Electrolyte Additive.","authors":"S Arockia Shyamala Paniyarasi,&nbsp;S Padmaja,&nbsp;M Pushpa Selvi,&nbsp;R M Gnanamuthu,&nbsp;R Nimma Elizabeth","doi":"10.1166/jnn.2021.19322","DOIUrl":"https://doi.org/10.1166/jnn.2021.19322","url":null,"abstract":"<p><p>The significant role of Tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an efficient additive during cycling of the layered nanostructured LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and olivine LiFePO₄ cathode materials in EC/DMC and 1M LiPF<sub>6</sub> electrolyte for Li-ion battery are extensively investigated in this work. The electrochemical characterization techniques such as cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy show that TTFP improves cycling stability and reduces the irreversible capacity of LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ electrodes. Also, the presence of TTFP in electrolyte solution reduces the impedance in LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ cathode materials at room temperature. A family of Nyquist plots was obtained from LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ electrodes for various potentials during the course of charging. The addition of TTFP in the electrolyte reduces the surface impedance of lithiated LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ which can be attributed to the reaction of the additive on the electrode's surface. Also, the presence of the additive TTFP in LiNi<sub>0.1</sub>Mg<sub>0.1</sub>Co<sub>0.8</sub>O₂ and LiFePO₄ cell enhances the lithium diffusion rate and improves the electronic conductivity of the cathode material.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6227-6233"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilely Prepared Cl-Doped Graphene as an Efficient Anode for the Electrochemical Catalytic Degradation of Acetaminophen. 易于制备的cl掺杂石墨烯作为电化学催化降解对乙酰氨基酚的高效阳极。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19526
Qian Zhang, Bingxin Wang, Jun-Ming Hong
{"title":"Facilely Prepared Cl-Doped Graphene as an Efficient Anode for the Electrochemical Catalytic Degradation of Acetaminophen.","authors":"Qian Zhang,&nbsp;Bingxin Wang,&nbsp;Jun-Ming Hong","doi":"10.1166/jnn.2021.19526","DOIUrl":"https://doi.org/10.1166/jnn.2021.19526","url":null,"abstract":"<p><p>The application of electrochemical catalytic oxidation in wastewater treatment with powerful Cldoped graphene as an anode has been discussed as a novel approach to degrade acetaminophen effectively. The characteristics of Cl-doped graphene that were related to Cl loading content and microscopic morphology were analyzed by using several instruments, and the defects created by Cl doping were identified. Quenching experiments and electron paramagnetic resonance detection were proposed to clarify the mechanism underlying the production of active free radicals by Cldopedgraphene. The degradation results indicated that efficiency increased with the percentage of Cl atoms doped into the graphene. The best degradation efficiency of acetaminophen could reach 98% when Cl-GN-12 was used. In the process of electrocatalytic oxidation, O<sup>•-</sup>₂, and active chlorine, as the main active species, persistently attacked acetaminophen into open-ring intermediates, such as 4-chlororesorcinol, and finally into CO₂ and H²O.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6073-6081"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Parameters of Diode Based Organometallic Semiconductor Dyes Centered Ruthenium Complexes with Active COOH Terminals. 具有活性羧基末端钌配合物的二极管基有机金属半导体染料的电子参数。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19508
Ali Kemal Havare
{"title":"Electronic Parameters of Diode Based Organometallic Semiconductor Dyes Centered Ruthenium Complexes with Active COOH Terminals.","authors":"Ali Kemal Havare","doi":"10.1166/jnn.2021.19508","DOIUrl":"https://doi.org/10.1166/jnn.2021.19508","url":null,"abstract":"<p><p>In this study, the ruthenium complexes, which is an organometallic N-3 and C-106 semiconductor material, was coated on indium tin oxide (ITO) by using the self-assembled technique and thus a diode containing an organometallic interface was produced. The effects of this interface on the electronic parameters of the diode were investigated. It is aimed to improve the heterogeneity problem of the inorganic/organic interface by chemically bonding these materials from COOH active parts to the ITO surface. In order to understand how the electronic parameters of the diode change with this modification, the Schottky diode electrical characterization approach has been used. The charge mobility of the diode was calculated using the current density-voltage curve (<i>J-V</i>) characteristic with Space Charge Limited Current (SCLC) technique. When the electrical field is applied to the diode, it can be said that the ruthenium complexes molecules create an electrical dipole and the tunneling current is transferred to the anode contact ITO through the ruthenium molecule through the charge carrier, thus contributing to the hole injection. The morphology of these interface modifications was examined by Atomic Force Microscope (AFM) and surface potential energy by KelvinProbe Force Microscope (KPFM). To investigate local conductivity of bare ITO and modified ITO surface, Scanning Spreading Resistance Microscopy (SSRM) that is a conductive AFM analyzing technique were performed by applying voltage to the conductive tip and to the sample. According to the results of this work the diode containing N-3 material shows the best performance in terms of charge injection to the ITO due to possess the lowest barrier height Φ<sub>b</sub> as 0.43 eV.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5937-5944"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of Nano-Particulate-Matter-Induced Lung Injury in Mice Using Quantitative Micro-Computed Tomography. 用定量微计算机断层扫描评价纳米颗粒物质诱导的小鼠肺损伤。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19522
Meiru Mao, Jianglong Kong, Kui Chen, Jiaxin Zhang, Ziteng Chen, Jiacheng Li, Yanan Chang, Hui Yuan, Xiaoyue Shi, Guogang Chen, Jian Zhang, Juan Li
{"title":"Evaluation of Nano-Particulate-Matter-Induced Lung Injury in Mice Using Quantitative Micro-Computed Tomography.","authors":"Meiru Mao,&nbsp;Jianglong Kong,&nbsp;Kui Chen,&nbsp;Jiaxin Zhang,&nbsp;Ziteng Chen,&nbsp;Jiacheng Li,&nbsp;Yanan Chang,&nbsp;Hui Yuan,&nbsp;Xiaoyue Shi,&nbsp;Guogang Chen,&nbsp;Jian Zhang,&nbsp;Juan Li","doi":"10.1166/jnn.2021.19522","DOIUrl":"https://doi.org/10.1166/jnn.2021.19522","url":null,"abstract":"<p><p>Nano-particulate matters (NPM) induced the lung injury in mice were evaluated using quantitative micro-computed tomography in the present article. It is an important negative effect of health problems that NPM exposure provokes changes in the lung injury. The micro-computed tomography (CT) to assess lung injury in mouse models has been investigated. The dynamic structural changes in a NPM-induced lung injury mouse mode were monitored. Adults female BALB/C mice were repeatedly exposed to NPM, and micro-CT scans were performed at day 0, 3, 5 and 9. Lung samples were also collected for histological analysis at each time point. The total lung volume, the injured lung volume, and the normal lung volume were defined and calculated volume during the phase of NPM-exposure on the mice. The total and injured lung volumes of NPM-exposed mice were significantly larger than those of the mice at day 5 and 9. The data from micro-CT was consistent with alveolar enlargement and destruction by histological quantification from pathological section. The study for NPM-induced lung injury model by micro-CT may extend our understanding of the distinct pathophysiology of NPM induced lung injury in mice.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6041-6047"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Silver Nanoprism for Selective and Sensitive Detection of Hg+2 Ions. 银纳米片选择性灵敏检测Hg+2离子。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19529
Avneesh Mittal, Komal Gupta, Balaram Pani, Gulshan Kumar, Gopala Ram Bhadu, Sachin Kumar Godara, Ratyakshi Nain, Sidhharth Sirohi
{"title":"Silver Nanoprism for Selective and Sensitive Detection of Hg<sup>+2</sup> Ions.","authors":"Avneesh Mittal,&nbsp;Komal Gupta,&nbsp;Balaram Pani,&nbsp;Gulshan Kumar,&nbsp;Gopala Ram Bhadu,&nbsp;Sachin Kumar Godara,&nbsp;Ratyakshi Nain,&nbsp;Sidhharth Sirohi","doi":"10.1166/jnn.2021.19529","DOIUrl":"https://doi.org/10.1166/jnn.2021.19529","url":null,"abstract":"<p><p>In this article, we propose high-performance colorimetric detection of Hg<sup>+2</sup> using silver nanoprisms. The spherical and triangular AgNPs were synthesized using varied concentration of NaBH4. Pristine AgNPs without any further modification were used for the detection of various metal ions including Hg<sup>2+</sup>, Pb<sup>2+</sup>, Cl<sup>-</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup>, Cr<sup>3+</sup>, Cr₂O<sup>2-</sup><sub>7</sub> , Fe<sup>2+</sup>, Fe<sup>3+</sup> etc. AgNPs were not only selective in detecting the ions of Cl<sup>-</sup> and Hg<sup>+2</sup> ions but also highly sensitive. Minimum detection limit was observed to be as low as 10<sup>-7</sup> ppm for both Hg<sup>+2</sup> and Cl<sup>-</sup>. Water samples collected from various locations detected for the presence of various heavy metals. Silver nanoprisms owing to their surface plasmon resonance exhibit highly selective tendency towards detection against Hg<sup>+2</sup>.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6094-6100"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信