Journal of nanoscience and nanotechnology最新文献

筛选
英文 中文
The Release of Indium Ion Derived from Epithelial Cells and Macrophages Solubilization Contribute to Pneumotoxicity Induced by Indium Oxide Nanoparticles. 来自上皮细胞的铟离子的释放和巨噬细胞的增溶有助于氧化铟纳米颗粒诱导的肺毒性。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19498
Mei Wang, Wei Song, Zhaofang Chen, Huilin Li, Jinhua Yuan, Hao Wang, Liya Wang, Jing Cao, Yue You, Linlin Chen, Feng Zhao, Yunhui Li
{"title":"The Release of Indium Ion Derived from Epithelial Cells and Macrophages Solubilization Contribute to Pneumotoxicity Induced by Indium Oxide Nanoparticles.","authors":"Mei Wang,&nbsp;Wei Song,&nbsp;Zhaofang Chen,&nbsp;Huilin Li,&nbsp;Jinhua Yuan,&nbsp;Hao Wang,&nbsp;Liya Wang,&nbsp;Jing Cao,&nbsp;Yue You,&nbsp;Linlin Chen,&nbsp;Feng Zhao,&nbsp;Yunhui Li","doi":"10.1166/jnn.2021.19498","DOIUrl":"https://doi.org/10.1166/jnn.2021.19498","url":null,"abstract":"<p><p>Occupational exposure to indium oxide and indium containing particles has been associated with the development of severe lung diseases called \"indium lung.\" According to the survey of occupational hygiene, indium oxide nanoparticles have been identified in the workplaces and the lungs of workers. To date, the potential mechanism of the pneumotoxicity has been poorly understood and no effective therapies are available against \"indium lung.\" Our present study reported that the exposure of indium oxide nanoparticles damaged lung epithelial cells and alveolar macrophages and induced pulmonary alveolar proteinosis and inflammation in rats. In the 8-week post-exposure period, the indium oxide nanoparticles still mostly accumulated in the lungs and then persistently release indium ions in two months after exposure. <i>In vitro</i>, the epithelial cells show the greater potential for release of indium ions from indium oxide nanoparticles compared with the macrophages. EDTA-2Na, a metal chelating agent expected to remove the indium ions, was found to significantly reduced the cytotoxicity of indium oxide nanoparticles. Herein, the pneumotoxicity may be attributed to the slow and incremental release of indium ions from indium oxide nanoparticles primary dissolved by epithelial cells and macrophages, at least partially. The study may provide some insights to the pathogenicity mechanisms of \"indium lung\" and some clues against the health hazards of occupational inhaled indium oxide nanoparticles at the workplaces.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preparation of Expanded Graphite and Graphite Nanosheets for Improving Electrical Conductivity of Polyester Coating Films. 提高聚酯涂层电导率的膨胀石墨和石墨纳米片的制备。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19516
Yun Ding, Mingxia Tian, Aili Wang, Hengbo Yin
{"title":"Preparation of Expanded Graphite and Graphite Nanosheets for Improving Electrical Conductivity of Polyester Coating Films.","authors":"Yun Ding,&nbsp;Mingxia Tian,&nbsp;Aili Wang,&nbsp;Hengbo Yin","doi":"10.1166/jnn.2021.19516","DOIUrl":"https://doi.org/10.1166/jnn.2021.19516","url":null,"abstract":"Expanded graphite and graphite nanosheets were facilely prepared by the thermal expansion of expandable graphite at 800 °C and sand milling of expanded graphite in water, respectively. When the expandable graphite precursor was prepared by the oxidation and intercalation of natural graphite (5 g) using KMnO₄ (6 g) as an oxidant in a concentrated sulfuric acid solution (120 mL) at room temperature (25 °C) for 8 h, the expanded graphite with a maximum volumetric rate of 317 mL g-1 was prepared after the thermal expansion of the expandable graphite precursor at 800 °C for 60 s. The oxidation extent of natural graphite with KMnO₄ is crucial for the preparation of expanded graphite. The thicknesses of graphite nanosheets decreased from 8.9 to 3.2 nm when the sand milling time of the expanded graphite in deionized water was prolonged from 6 to 24 h. The prolonging of the sand milling time not only decreased the layer number of the graphite nanosheet but also increased the d002 spacing due to the shocking and shearing forces. The addition of the expanded graphite powder and graphite nanosheets in a polyester paint efficiently improved the electrical conductivity of the resultant polyester coating films.","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Compatibility of Photoluminescence Properties in ScPO₄:Eu3+, Tb3+ Phosphor for White Light Emitting Diodes. 白光二极管用ScPO₄:Eu3+, Tb3+荧光粉的光致发光性能相容性
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19507
Jian Zhou, Jian-Wen Zhao, Si-Li Ren, Jun Dong
{"title":"Compatibility of Photoluminescence Properties in ScPO₄:Eu<sup>3+</sup>, Tb<sup>3+</sup> Phosphor for White Light Emitting Diodes.","authors":"Jian Zhou,&nbsp;Jian-Wen Zhao,&nbsp;Si-Li Ren,&nbsp;Jun Dong","doi":"10.1166/jnn.2021.19507","DOIUrl":"https://doi.org/10.1166/jnn.2021.19507","url":null,"abstract":"<p><p>ScPO₄:Eu<sup>3+</sup>, Tb<sup>3+</sup> phosphors with tuned emission color were prepared through high temperature solid-state reaction. The structure, morphology and photoluminescence properties of the title samples were collected by XRD, SEM and fluorescence spectrophotometer, respectively. Co-doping Eu<sup>3+</sup> and Tb<sup>3+</sup> in ScPO₄ does not change the body-centered tetragonal structure of the host. And the morphology remains essentially unchanged except for slight agglomeration. Changing the ratio of Tb<sup>3+</sup>/Eu<sup>3+</sup>, the tuned emission can be achieved, the color could be adjusted from green through yellow to orange-red. The ScPO₄:0.03Tb<sup>3+</sup>, 0.03Eu<sup>3+</sup> phosphor with high thermal stability as the single matrix phosphor can be suitable for the NUV-pumped white LED. The white LED with a color rendering index of 86.5 and a correlated color temperature of 3470 K has been generated by packaging BAM:Eu<sup>2+</sup> with ScPO₄:0.03Tb<sup>3+</sup>, 0.03Eu<sup>3+</sup> on an NUV-InGaN chip.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications. 绿色和简单合成用于传感和细胞成像的光致发光可调碳点。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19530
Dong Sun, Shu-Jun Li, Chun-Feng Wang, Tian-Tian Liu, Guang-Yue Bai, Ke-Lei Zhuo
{"title":"Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications.","authors":"Dong Sun,&nbsp;Shu-Jun Li,&nbsp;Chun-Feng Wang,&nbsp;Tian-Tian Liu,&nbsp;Guang-Yue Bai,&nbsp;Ke-Lei Zhuo","doi":"10.1166/jnn.2021.19530","DOIUrl":"https://doi.org/10.1166/jnn.2021.19530","url":null,"abstract":"<p><p>Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg<sup>2+</sup> determination and fluorescent imaging reagent in cells.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Catalytic Activities of TiO₂ Nanotube Arrays Co-Sensitized with Pt/CdS/ZnS via Electrodeposition and Successive Ionic Layer Adsorption and Reaction (SILAR) Method Approach. 通过电沉积和连续离子层吸附反应(SILAR)方法增强Pt/CdS/ZnS共敏tio2纳米管阵列的催化活性。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19531
Van Manh Nguyen, Trinh Tung Ngo, Thi Thu Trang Bui, Thi Thanh Hop Tran, The Huu Nguyen, Duc Cong Trinh
{"title":"Enhanced Catalytic Activities of TiO₂ Nanotube Arrays Co-Sensitized with Pt/CdS/ZnS via Electrodeposition and Successive Ionic Layer Adsorption and Reaction (SILAR) Method Approach.","authors":"Van Manh Nguyen,&nbsp;Trinh Tung Ngo,&nbsp;Thi Thu Trang Bui,&nbsp;Thi Thanh Hop Tran,&nbsp;The Huu Nguyen,&nbsp;Duc Cong Trinh","doi":"10.1166/jnn.2021.19531","DOIUrl":"https://doi.org/10.1166/jnn.2021.19531","url":null,"abstract":"<p><p>In this work, we have synthesized a nanocomposite ZnS/CdS/Pt/TiO₂ nanotube arrays (denoted ZCP-NTAs). Firstly, TiO₂ nanotube array (NTAs) material was fabricated by the anodic method of a titanium plate in an electrolyte solution containing 0.35 M NaHSO₄ and 0.24 M NaF and incubated in the air at 500 ºC for 2 hours. After that, pulsed electrodeposition technology was used to decorate platinum nanoparticles (denoted as Pt NPs) onto the surface of TiO₂ nanotubes to form P-NTAs photoelectrodes. Then, the SILAR method is used to deposition CdS quantum dots (symbolized as CdS QDs) on the surface of P-NTAs to form CP-NTAs material. Finally, by the SILAR method, a ZnS passive layer that protects against optical corrosion and inhibits recombination of e<sup>-</sup>/h<sup>+</sup> pairs was coated onto the CP-NTAs to form ZCP-NTAs material. As-prepared ZCP-NTAs photocatalytic material has good absorbability of light in the visible region with light absorption wavelength up to 608 nm, photon conversion efficiency up to 5.32% under light intensity AM1.5G, and decomposition efficiency of 10 mg L<sup>-1</sup> methyl orange (MO) in 120 minutes reached 91.50%. This material promises to bring high application ability in the photocatalytic field applied for environmental treatment and other applications.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercial Wet-Spun Singlewall and Dry-Spun Multiwall Carbon Nanotube Fiber Surface O-Functionalization by Ozone Treatment. 工业湿纺单壁和干纺多壁碳纳米管纤维的臭氧处理表面o功能化。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19536
Rajyashree M Sundaram, Takeo Yamada, Ken Kokubo, Kenji Hata, Atsuko Sekiguchi
{"title":"Commercial Wet-Spun Singlewall and Dry-Spun Multiwall Carbon Nanotube Fiber Surface O-Functionalization by Ozone Treatment.","authors":"Rajyashree M Sundaram,&nbsp;Takeo Yamada,&nbsp;Ken Kokubo,&nbsp;Kenji Hata,&nbsp;Atsuko Sekiguchi","doi":"10.1166/jnn.2021.19536","DOIUrl":"https://doi.org/10.1166/jnn.2021.19536","url":null,"abstract":"<p><p>In this work, we demonstrate controlled introduction of O-functional groups on commercial carbon nanotube fibers (CNTFs) with different nanotube morphologies obtained by dry- and wet-spinning by treatment with gaseous ozone (O₃(g)). Our test samples were (1) wet-spun fibers of smalldiameter (1-2 nm) singlewall (SW)-CNTs and (2) dry-spun fibers containing large-diameter (20 nm) multiwall (MW)-CNTs. Our results indicate that SW-CNTFs undergo oxygenation to a higher extent than MW-CNTFs due to the higher reactivity of SW-CNTs with a larger curvature strain. Oxygenation resulting from O₃ exposure was evidenced as increase in surface O atomic% (at% by X-ray photoelectron spectroscopy, XPS) and as reductions in G/D (by Raman spectroscopy) as well as electrical conductivities due to changes in nanotube graphitic structure. By XPS, we identified the emergence of various types of O-functionalities on the fiber surfaces. After long duration O3 exposure (>300 s for SW-CNTFs and >600 s for MW-CNTFs), both <i>sp</i>² C═O (carbonyl) and <i>sp</i>³ C-O moieties (ether/hydroxy) were observed on fiber surfaces. Whereas, only <i>sp</i>³ C-O (ether/hydroxy) components were observed after shorter exposure times. O₃ treatment led to only changes in surface chemistry, while the fiber morphology, microstructure and dimensions remained unaltered. We believe the surface chemistry controllability demonstrated here on commercial fibers spun by different methods containing nanotubes of different structures is of significance in aiding the practical application development of CNTFs.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39159034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Simple Dilution Method for Preparation of Different Aggregates from Oleic Acid/CHAPSO Bicelles. 油酸/CHAPSO小柱制备不同聚集体的简单稀释法。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19501
Shogo Taguchi, Yasuaki Tachibana, Yuta Kimura, Takuji Yamamoto, Hiroshi Umakoshi
{"title":"A Simple Dilution Method for Preparation of Different Aggregates from Oleic Acid/CHAPSO Bicelles.","authors":"Shogo Taguchi,&nbsp;Yasuaki Tachibana,&nbsp;Yuta Kimura,&nbsp;Takuji Yamamoto,&nbsp;Hiroshi Umakoshi","doi":"10.1166/jnn.2021.19501","DOIUrl":"https://doi.org/10.1166/jnn.2021.19501","url":null,"abstract":"<p><p>We evaluated the effect of dilution on both the size and packing density of aggregates prepared from a fatty acid (oleic acid, OA)/detergent (3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxypropane sulfonate (CHAPSO)) bicelle as a parent for functional membrane materials. The sizes of the aggregates formed at different molar ratios, <i>X</i><sub>OA</sub>(= [OA]/([OA]+[CHAPSO])), of 0.3 and 0.7 and their parent bicelles were measured by dynamic light scattering and transmission electron microscopy; their packing density was evaluated by deconvolution of the fluorescence spectrum, where Laurdan molecules were used as a probe. The experimental results showed that the bicelles formed aggregates upon dilution because of the hydration of CHAPSO. The packing density of the nano-ordered aggregate formed at <i>X</i><sub>OA</sub> = 0.3 was much greater than that of the aggregate formed at <i>X</i><sub>OA</sub> = 0.7, implying the formation of an ordered aggregate under the condition of <i>X</i><sub>OA</sub> = 0.3.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cadmium Sulfide (CdS) Thin Films with Improved Morphology for Humidity Sensing by Chemical Bath Deposition at Lower pH. 在低pH下化学浴沉积具有改善形态的硫化镉(CdS)薄膜用于湿度传感。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19521
Sucheta Sengupta, Avshish Kumar, V K Jain
{"title":"Cadmium Sulfide (CdS) Thin Films with Improved Morphology for Humidity Sensing by Chemical Bath Deposition at Lower pH.","authors":"Sucheta Sengupta,&nbsp;Avshish Kumar,&nbsp;V K Jain","doi":"10.1166/jnn.2021.19521","DOIUrl":"https://doi.org/10.1166/jnn.2021.19521","url":null,"abstract":"<p><p>Cadmium sulfide (CdS), an II-VI group semiconductor material, is one of the most investigated semiconductors in thin film form. In this work, we synthesized CdS thin films with improved film morphology in the presence of ethylene diamine (EA) as the complexing agent by chemical bath deposition (CD) at lower pH. Detailed characterization reveals the presence of cubic phase CdS with a band gap of 2.39 eV with the resultant morphology significantly influenced by the composition of the growth solution. The resultant CdS films finds prospective application as a humidity sensor with a high sensor response of 2.61 corresponding to 80% relative humidity.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration. 利用边缘波纹设计之字形蓝色磷磷和砷纳米带的能带结构:第一性原理的探索。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19510
Aditya Dey, Debalina Chakraborty
{"title":"Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration.","authors":"Aditya Dey,&nbsp;Debalina Chakraborty","doi":"10.1166/jnn.2021.19510","DOIUrl":"https://doi.org/10.1166/jnn.2021.19510","url":null,"abstract":"<p><p>Using first principles calculations, we have presented a short study on modulation of band structures and electronic properties of zigzag blue phosphorene (ZbPNR) and arsenene nanoribbons (ZANR) by etching the edges of NRs. We have taken the width of both NRs as <i>N</i> = 8 and corrugated the edges in a cosine-like manner. Optimizing every structure and further investigating their stabilities, it was seen that both the etched NRs are energetically feasible. From the computed band structures, the band gaps were seen to be increased for both the NRs on increasing number of etched layers and direct gap semiconductor nature was recorded. Highest energy gap observed were 2.26 and 2.41 eV for ZbPNR and ZANR, respectively. On further application of electric field, we observed the very interesting semiconductor-to-metallic property transition which was explained by wave function plots. Being elements of same group, a similar trend of band gaps modulations was observed for both NRs. This fascinating method of electronic property tuning of the studied NRs can be useful in various nanoscale electronic applications.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Impact of Synthesis Methods on Structural and Antifungal Properties of Metal Sulfide Nanoparticles. 合成方法对金属硫化物纳米颗粒结构和抗真菌性能的影响。
Journal of nanoscience and nanotechnology Pub Date : 2021-12-01 DOI: 10.1166/jnn.2021.19515
Radha Ahuja, Anjali Sidhu, Anju Bala
{"title":"Impact of Synthesis Methods on Structural and Antifungal Properties of Metal Sulfide Nanoparticles.","authors":"Radha Ahuja,&nbsp;Anjali Sidhu,&nbsp;Anju Bala","doi":"10.1166/jnn.2021.19515","DOIUrl":"https://doi.org/10.1166/jnn.2021.19515","url":null,"abstract":"<p><p>Nanotechnology has the ability to produce novel nano-sized materials with excellent physical and chemical properties to act against phytopathogenic diseases, essential for revolution of agriculture and food industry. The development of facile, reliable and eco-friendly processes for the synthesis of biologically active nanomaterials is an important aspect of nanotechnology. In the present paper, we attempted to compare sonochemical and co-precipitation method for the synthesis of metal sulfide nanoparticles (MS-NPs) for their structural and antifungal properties against various phytopathogenic fungi of rice. The preparation of nanospheres (NSs) and nano rods (NRs) of CuS, FeS and MnS was monitored by UV-Visible spectroscopy complemented by transmission electron microscope (TEM), scanning electron microscope (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Zeta potential analyser. Sonochemical method resulted in formation of spherical shaped nanoparticles of size (7-120 nm), smaller than those of nanorods (50-200 nm) prepared by co-precipitation produced. It was observed that the metal sulfide nanospheres exhibited a better antifungal potential against <i>D. oryzae, C. lunata and S. oryzae</i> as compared to rod shaped metal sulfide nanoparticles. Smaller size and large surface area of spherical shaped particles opens up an important perspective of the prepared MS-NPs.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信