{"title":"银纳米片选择性灵敏检测Hg+2离子。","authors":"Avneesh Mittal, Komal Gupta, Balaram Pani, Gulshan Kumar, Gopala Ram Bhadu, Sachin Kumar Godara, Ratyakshi Nain, Sidhharth Sirohi","doi":"10.1166/jnn.2021.19529","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we propose high-performance colorimetric detection of Hg<sup>+2</sup> using silver nanoprisms. The spherical and triangular AgNPs were synthesized using varied concentration of NaBH4. Pristine AgNPs without any further modification were used for the detection of various metal ions including Hg<sup>2+</sup>, Pb<sup>2+</sup>, Cl<sup>-</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup>, Cr<sup>3+</sup>, Cr₂O<sup>2-</sup><sub>7</sub> , Fe<sup>2+</sup>, Fe<sup>3+</sup> etc. AgNPs were not only selective in detecting the ions of Cl<sup>-</sup> and Hg<sup>+2</sup> ions but also highly sensitive. Minimum detection limit was observed to be as low as 10<sup>-7</sup> ppm for both Hg<sup>+2</sup> and Cl<sup>-</sup>. Water samples collected from various locations detected for the presence of various heavy metals. Silver nanoprisms owing to their surface plasmon resonance exhibit highly selective tendency towards detection against Hg<sup>+2</sup>.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6094-6100"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silver Nanoprism for Selective and Sensitive Detection of Hg<sup>+2</sup> Ions.\",\"authors\":\"Avneesh Mittal, Komal Gupta, Balaram Pani, Gulshan Kumar, Gopala Ram Bhadu, Sachin Kumar Godara, Ratyakshi Nain, Sidhharth Sirohi\",\"doi\":\"10.1166/jnn.2021.19529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we propose high-performance colorimetric detection of Hg<sup>+2</sup> using silver nanoprisms. The spherical and triangular AgNPs were synthesized using varied concentration of NaBH4. Pristine AgNPs without any further modification were used for the detection of various metal ions including Hg<sup>2+</sup>, Pb<sup>2+</sup>, Cl<sup>-</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup>, Cr<sup>3+</sup>, Cr₂O<sup>2-</sup><sub>7</sub> , Fe<sup>2+</sup>, Fe<sup>3+</sup> etc. AgNPs were not only selective in detecting the ions of Cl<sup>-</sup> and Hg<sup>+2</sup> ions but also highly sensitive. Minimum detection limit was observed to be as low as 10<sup>-7</sup> ppm for both Hg<sup>+2</sup> and Cl<sup>-</sup>. Water samples collected from various locations detected for the presence of various heavy metals. Silver nanoprisms owing to their surface plasmon resonance exhibit highly selective tendency towards detection against Hg<sup>+2</sup>.</p>\",\"PeriodicalId\":16417,\"journal\":{\"name\":\"Journal of nanoscience and nanotechnology\",\"volume\":\"21 12\",\"pages\":\"6094-6100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanoscience and nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jnn.2021.19529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silver Nanoprism for Selective and Sensitive Detection of Hg+2 Ions.
In this article, we propose high-performance colorimetric detection of Hg+2 using silver nanoprisms. The spherical and triangular AgNPs were synthesized using varied concentration of NaBH4. Pristine AgNPs without any further modification were used for the detection of various metal ions including Hg2+, Pb2+, Cl-, Cd2+, Co2+, Cu2+, Ba2+, Pb2+, Cr3+, Cr₂O2-7 , Fe2+, Fe3+ etc. AgNPs were not only selective in detecting the ions of Cl- and Hg+2 ions but also highly sensitive. Minimum detection limit was observed to be as low as 10-7 ppm for both Hg+2 and Cl-. Water samples collected from various locations detected for the presence of various heavy metals. Silver nanoprisms owing to their surface plasmon resonance exhibit highly selective tendency towards detection against Hg+2.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.