{"title":"Chemical exchange in unstable emulsions","authors":"Ke Xu, Jörn Schmedt auf der Günne","doi":"10.1016/j.jmr.2025.107875","DOIUrl":"10.1016/j.jmr.2025.107875","url":null,"abstract":"<div><div>Nuclear magnetic resonance (NMR) is a routine method to study chemical exchange in reactions and molecular rearrangements in solution. However, when it comes to exchange of molecular species in liquid-liquid, two phase systems like in phase-transfer catalysis, the rate becomes a function of the surface area between two phases, which means that only persistent emulsions could be studied with standard equipment. Unstable emulsions, which rapidly demix, require a continuous application of shear forces by stirring. Here, a setup is described with which unstable emulsions can be produced and studied in-situ by solution NMR spectroscopy. The setup provides sufficient torque and spinning frequency for generating an unstable two-phase water/oil mixture by rapid stirring. The pneumatically driven stirrer in the probe head was designed using ideas borrowed from magic angle sample spinning and a prototype was produced by 3D printing. As proof of concept, the dynamics in an aniline water emulsion over the phase boundary are studied by regular exchange spectroscopy NMR experiments.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"375 ","pages":"Article 107875"},"PeriodicalIF":2.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143746888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandr Fedotov , Pavel Tikhonov , Viktor Puchnin , Ekaterina Brui , Anatoliy Levchuk , Ayshat Karaeva , Alena Shchelokova , Georgiy Solomakha , Anna Hurshkainen
{"title":"A concept of volume wireless receive-only coil for 1.5T MRI","authors":"Aleksandr Fedotov , Pavel Tikhonov , Viktor Puchnin , Ekaterina Brui , Anatoliy Levchuk , Ayshat Karaeva , Alena Shchelokova , Georgiy Solomakha , Anna Hurshkainen","doi":"10.1016/j.jmr.2025.107841","DOIUrl":"10.1016/j.jmr.2025.107841","url":null,"abstract":"<div><div>Wireless radio frequency coils offer an alternative to conventional cable-connected coils due to their compatibility with multiple vendor MRI systems and reduced electromagnetic interaction with the environment of the MRI scanner. However, wireless coils being inductively coupled with a transceiver body coil require manual input power calibration due to the significant increase of a body coil transmit efficiency locally in the region of interest and disturbance of <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> homogeneity complicating routine scanning procedures. This study aims to implement the concept of a wireless receive-only coil for female breast MRI at 1.5T. The approach combines the advantages of wireless coils to increase signal to noise ratio of transceiver body coil in the target region of interest and the ability to perform the automatic reference voltage calibration.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107841"},"PeriodicalIF":2.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selina Eckel , Julian Nagel , Mazin Jouda , Jan Gerrit Korvink , Ahmet Çağrı Ulusoy
{"title":"Design of planar transmission line microwave probes for broadband EPR spectroscopy","authors":"Selina Eckel , Julian Nagel , Mazin Jouda , Jan Gerrit Korvink , Ahmet Çağrı Ulusoy","doi":"10.1016/j.jmr.2025.107866","DOIUrl":"10.1016/j.jmr.2025.107866","url":null,"abstract":"<div><div>In broadband transmission-based electron paramagnetic resonance (EPR) spectrometers, non-resonant planar microwave probes play a key role, but very few systematic explorations of their design space exist. We develop design guidelines for two common types of transmission lines, microstrip and coplanar waveguide, to achieve a high effective microwave magnetic field strength, which ultimately leads to a more sensitive EPR measurement set-up. We compare the optimized transmission line structures and show that the coplanar waveguide achieves a higher simulated effective magnetic field strength. The simulation results are confirmed by EPR measurements up to a microwave frequency of 45<!--> <!-->GHz.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107866"},"PeriodicalIF":2.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yishay Manassen , Michael Averbukh , Zion Hazan , Yahel Tzuriel , Pino Boscolo , Alexander Shnirman , Baruch Horovitz
{"title":"NMR of a single nuclear spin detected by a scanning tunnelling microscope","authors":"Yishay Manassen , Michael Averbukh , Zion Hazan , Yahel Tzuriel , Pino Boscolo , Alexander Shnirman , Baruch Horovitz","doi":"10.1016/j.jmr.2025.107863","DOIUrl":"10.1016/j.jmr.2025.107863","url":null,"abstract":"<div><div>We detect a single spin nuclear magnetic resonance (NMR) by monitoring the intensity modulations of a selected hyperfine line in the electron spin resonance (ESR) spectrum. We analyse the power spectrum of the corresponding hyperfine intensity and obtain the nuclear magnetic resonance (NMR) spectrum. Our process also demonstrates ionization of a molecule with the bias voltage of a Scanning Tunnelling Microscope (STM), allowing detection of NMR even in molecules that are non-radical in their neutral state. We have observed this phenomenon in four types of molecules: toluene, triphenylphosphine, TEMPO and adenosine triphosphate (ATP) showing NMR of <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H, <sup>13</sup>C, <sup>31</sup>P and <sup>14</sup>N nuclei. The spectra are detailed and show signatures of the chemical environment, i.e. chemical shifts. A theoretical model to account for these data is outlined.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107863"},"PeriodicalIF":2.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction and testing of a high-homogeneity 55 T pulsed magnet for high-field nuclear magnetic resonance measurements","authors":"Wenqi Wei, Luchen Wei, Shunkun Ouyang, Kangjian Luo, Zhuo Wang, Shiyu Liu, Yongkang Luo, Xiaotao Han","doi":"10.1016/j.jmr.2025.107862","DOIUrl":"10.1016/j.jmr.2025.107862","url":null,"abstract":"<div><div>High-field nuclear magnetic resonance (NMR) experiments call for the further development of pulsed magnets with a more practical winding structure and higher magnetic field homogeneity. This study presents the construction method and test results of a high-homogeneity pulsed magnet based on an optimized localized split structure. A winding craft using gap spacers was developed for the precise winding of split-gap transition wires. Magnetic field mapping was achieved in a steady-state low field of 32 mT using a Hall probe, with a measured magnetic field inhomogeneity of 198 ± 19 ppm over 1 cm diameter of spherical volume (DSV). The full-width at half-maximum (FWHM) of NMR spectra was adopted as a means of evaluating the magnetic field homogeneity in the pulsed field. In the optimal position, the measured FWHM is 42.2 ± 2.5 ppm at the low field of 7.7 T over a sample volume of 12.6 mm<sup>3</sup>. At the high field of 50 T, the FWHM decreases to 16.2 ± 0.8 ppm, which is a superior value achieved in similar reported pulsed magnets.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107862"},"PeriodicalIF":2.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143593396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relativistic effects on the magnetic shielding in solids: First-principles computation in a plane wave code","authors":"J.W. Zwanziger, A.R. Farrant, U. Werner-Zwanziger","doi":"10.1016/j.jmr.2025.107861","DOIUrl":"10.1016/j.jmr.2025.107861","url":null,"abstract":"<div><div>For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis. We describe our implementation in an open source code, <span>Abinit</span>, and show how it correctly predicts magnetic shieldings in various scenarios, for example the heavy atom next to light atom cases of the III–V semiconductors such as AlSb.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107861"},"PeriodicalIF":2.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominique Lagasca , Rupam Ghosh , Yiling Xiao , Kendra K. Frederick
{"title":"Stability of the polarization agent AsymPolPOK in intact and lysed mammalian cells","authors":"Dominique Lagasca , Rupam Ghosh , Yiling Xiao , Kendra K. Frederick","doi":"10.1016/j.jmr.2025.107864","DOIUrl":"10.1016/j.jmr.2025.107864","url":null,"abstract":"<div><div>Dynamic nuclear polarization (DNP) solid-state NMR enables detection of proteins inside cells through sensitivity enhancement from nitroxide biradical polarization agents. AsymPolPOK, a novel water-soluble asymmetric nitroxide biradical, offers superior sensitivity and faster build-up times compared to existing agents like AMUPol. Here, we characterize AsymPolPOK's behavior in mammalian HEK293 cells, examining its cellular distribution, reduction kinetics, and DNP performance. We demonstrate that electroporation achieves uniform cellular delivery of AsymPolPOK, including nuclear permeation, with no cytotoxicity at millimolar concentrations. However, the cellular environment rapidly reduces AsymPolPOK to its monoradical form, with one nitroxide center showing greater reduction resistance than the other. While AsymPolPOK maintains high DNP enhancements and short build-up times in lysates, its performance in intact cells depends critically on delivery method and exposure time to cellular constituents. Electroporation yields higher, more uniform enhancements compared to incubation, but prolonged exposure to the cellular environment diminishes DNP performance in both cases. These findings establish AsymPolPOK's potential for in-cell DNP NMR while highlighting the need for developing more bio-resistant polarization agents to further advance cellular structural biology studies.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107864"},"PeriodicalIF":2.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajeak Vigneswaran , Tanner A. Buschmann , Michael P. Latham
{"title":"Leveraging AlphaFold2 and residual dipolar couplings for side-chain methyl group assignment: A case study with S. cerevisiae Xrs2","authors":"Ajeak Vigneswaran , Tanner A. Buschmann , Michael P. Latham","doi":"10.1016/j.jmr.2025.107865","DOIUrl":"10.1016/j.jmr.2025.107865","url":null,"abstract":"<div><div>Side-chain methyl group NMR spectroscopy provides invaluable insights into macromolecular structure, dynamics, and function, particularly for large biomolecular complexes. Accurate assignment of methyl group resonances in two-dimensional spectra is essential for structural and dynamics studies. Traditional methyl group assignment strategies rely on either transferring assignments from backbone resonance data or NOESY data and high-resolution experimental structures; however, these methods are often limited by molecular size or availability of structural information, respectively. Here, we describe the use of AlphaFold2 structural models as a basis for the manual, distance-based assignment of side-chain methyl group resonances in the folded domains of <em>S. cerevisiae</em> Xrs2. While AlphaFold2 models facilitated initial assignments for the methyl resonances, inaccuracies in the side-chain coordinates highlighted the need for improved structural models. By generating >500 ColabFold-derived models and filtering with methyl residual dipolar couplings (RDCs), we identified structural models with superior agreement to experimental data. These refined models enabled additional methyl group assignments while suggesting an iterative approach to simultaneously improve structure prediction and resonance assignment. Our findings outline a workflow that integrates machine learning-based structural predictions with experimental NMR data, offering a pathway for advancing methyl group assignment in systems lacking high-resolution experimental structures.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107865"},"PeriodicalIF":2.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dipolar-order-based broadband adiabatic inversion as cross- polarization alternative in solid state Wideline NMR","authors":"Tamar Wolf, Lucio Frydman","doi":"10.1016/j.jmr.2025.107860","DOIUrl":"10.1016/j.jmr.2025.107860","url":null,"abstract":"<div><div>Solid-state nuclear magnetic resonance (NMR) can shed light on atomic-level arrangements for most elements in the Periodic Table. This ability hinges on the possibility to overcome NMR's low sensitivity, particularly when dealing with unreceptive nuclei yielding ultra-wideline (>500 kHz) patterns from powdered samples. Herein, we present an experiment capable of enhancing the signals of such static samples, by transferring dipolar order from surrounding, highly polarized protons. The experiment, which we dub Dipolar-Order-based BRoadband Adiabatic INversion Cross-Polarization (DOBRAIN-CP), utilizes a Freeman-Kupče broadband inversion WURST pulse to perform CP over the wideline spectrum of the low receptivity species, while matching the low frequencies associated to <sup>1</sup>H<img><sup>1</sup>H dipolar fields. We present analytical and numerical analyses of the spin-dynamics of DOBRAIN-CP for spin-½ nuclei, as well as for quadrupolar spins. Experimental results are also presented for spin-½, integer and half-integer quadrupolar spins; these show that although DOBRAIN-CP delivers broadband excitation and sensitivity enhancement compared to direct excitations, it does not exceed the sensitivity enhancement of the BRAIN-CP variant based on Hartmann-Hahn matching. The power requirements for DOBRAIN-CP are extremely low, yet long dipolar-order lifetimes T<sub>1D</sub> are needed to support the DOBRAIN-CP build-up times.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"373 ","pages":"Article 107860"},"PeriodicalIF":2.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Full determination of chemical shift tensor in magnetically oriented microcrystals with modulated rotation and temporal tilt","authors":"Ryosuke Kusumi , Hayate Yasui , Hiroshi Kadoma , Masahisa Wada , Kazuyuki Takeda","doi":"10.1016/j.jmr.2025.107853","DOIUrl":"10.1016/j.jmr.2025.107853","url":null,"abstract":"<div><div>Complete characterization of <sup>13</sup>C chemical shift tensor in magnetically oriented microcrystal suspension (MOMS) is demonstrated with an inhouse <sup>1</sup>H-<sup>13</sup>C double resonance probe capable of rotating microcrystals and of tilting the sample temporarily during the period of NMR signal acquisition. The <sup>13</sup>C chemical shift tensor in three-dimensional MOMS of <span>l</span>-alanine is determined from <sup>13</sup>C rotation patterns around a tilted axis. The present results prove that even for micrometer-sized microcrystals the chemical shift tensor can be fully determined like in the case of a single piece of bulky crystal but without elaborate sample mounting. Two-dimensional experiments correlating chemical shifts for different sample orientations are also demonstrated.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"373 ","pages":"Article 107853"},"PeriodicalIF":2.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}