Victor B. Kassey , Matthias Walle , Diana Yeritsyan , Daniel V. Kassey , Yaotang Wu , Brian D. Snyder , Edward K. Rodriguez , Jerome L. Ackerman , Ara Nazarian
{"title":"使用固态MRI和双调谐射频线圈量化大鼠骨骼中的骨基质和矿物质密度","authors":"Victor B. Kassey , Matthias Walle , Diana Yeritsyan , Daniel V. Kassey , Yaotang Wu , Brian D. Snyder , Edward K. Rodriguez , Jerome L. Ackerman , Ara Nazarian","doi":"10.1016/j.jmr.2025.107925","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative information on the composition of bone, specifically the content of calcium phosphate mineral and organic matrix, is essential for accurate diagnosis of metabolic bone diseases such as osteoporosis, osteomalacia, and renal osteodystrophy, as well as for differentiating among these conditions. Conventional MRI fails to provide this information because these substances are solid and, therefore, yield no signal in conventional MRI scans, which typically employ spin or gradient echoes. In this report, we show how phosphorus and proton solid-state MRI yield the desired compositional information in bone specimens with ZTE and WASPI pulse sequences, respectively, coupled with the use of a two-port double-tuned solenoidal RF coil.</div><div>Electrical network simulations and construction details of the RF coil are detailed. Electrical performance was simulated using QUCS software to find the circuit component values that minimize reflected power and maximize interport isolation. Phantoms of known composition, as well as ex vivo femurs from normal, low bone density, and vitamin D-deficient rats, were included in the study. A simple correction for B<sub>1</sub> inhomogeneity was applied to achieve quantitative accuracy in the image intensity values.</div><div>Bone matrix and mineral densities derived from MRI strongly correlated (R<sup>2</sup> = 0.84) with chemical analysis, demonstrating the ability to measure compositional differences relevant to osteoporosis and osteomalacia.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"378 ","pages":"Article 107925"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using solid-state MRI and a double-tuned RF coil to quantify bone matrix and mineral densities in rat bones\",\"authors\":\"Victor B. Kassey , Matthias Walle , Diana Yeritsyan , Daniel V. Kassey , Yaotang Wu , Brian D. Snyder , Edward K. Rodriguez , Jerome L. Ackerman , Ara Nazarian\",\"doi\":\"10.1016/j.jmr.2025.107925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantitative information on the composition of bone, specifically the content of calcium phosphate mineral and organic matrix, is essential for accurate diagnosis of metabolic bone diseases such as osteoporosis, osteomalacia, and renal osteodystrophy, as well as for differentiating among these conditions. Conventional MRI fails to provide this information because these substances are solid and, therefore, yield no signal in conventional MRI scans, which typically employ spin or gradient echoes. In this report, we show how phosphorus and proton solid-state MRI yield the desired compositional information in bone specimens with ZTE and WASPI pulse sequences, respectively, coupled with the use of a two-port double-tuned solenoidal RF coil.</div><div>Electrical network simulations and construction details of the RF coil are detailed. Electrical performance was simulated using QUCS software to find the circuit component values that minimize reflected power and maximize interport isolation. Phantoms of known composition, as well as ex vivo femurs from normal, low bone density, and vitamin D-deficient rats, were included in the study. A simple correction for B<sub>1</sub> inhomogeneity was applied to achieve quantitative accuracy in the image intensity values.</div><div>Bone matrix and mineral densities derived from MRI strongly correlated (R<sup>2</sup> = 0.84) with chemical analysis, demonstrating the ability to measure compositional differences relevant to osteoporosis and osteomalacia.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"378 \",\"pages\":\"Article 107925\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725000977\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000977","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Using solid-state MRI and a double-tuned RF coil to quantify bone matrix and mineral densities in rat bones
Quantitative information on the composition of bone, specifically the content of calcium phosphate mineral and organic matrix, is essential for accurate diagnosis of metabolic bone diseases such as osteoporosis, osteomalacia, and renal osteodystrophy, as well as for differentiating among these conditions. Conventional MRI fails to provide this information because these substances are solid and, therefore, yield no signal in conventional MRI scans, which typically employ spin or gradient echoes. In this report, we show how phosphorus and proton solid-state MRI yield the desired compositional information in bone specimens with ZTE and WASPI pulse sequences, respectively, coupled with the use of a two-port double-tuned solenoidal RF coil.
Electrical network simulations and construction details of the RF coil are detailed. Electrical performance was simulated using QUCS software to find the circuit component values that minimize reflected power and maximize interport isolation. Phantoms of known composition, as well as ex vivo femurs from normal, low bone density, and vitamin D-deficient rats, were included in the study. A simple correction for B1 inhomogeneity was applied to achieve quantitative accuracy in the image intensity values.
Bone matrix and mineral densities derived from MRI strongly correlated (R2 = 0.84) with chemical analysis, demonstrating the ability to measure compositional differences relevant to osteoporosis and osteomalacia.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.