Alexander Karabanov , Eugeny Kryukov , Gareth Morris , Jeremy Good
{"title":"Removing magnetic field noise from NMR spectra: Reference deconvolution revisited","authors":"Alexander Karabanov , Eugeny Kryukov , Gareth Morris , Jeremy Good","doi":"10.1016/j.jmr.2025.107937","DOIUrl":null,"url":null,"abstract":"<div><div>Reference deconvolution, a powerful mathematical tool for removing the effects of imperfections of the main magnetic field on NMR spectra, is revisited in the context of strong static and dynamic field perturbations. The theoretical basis and experimental evidence for the high efficiency of reference deconvolution for strong magnetic field distortions in basic liquid-state one- and two-dimensional NMR are given.</div><div>In particular, in 2D NMR, we utilise our observation that a strong static inhomogeneity of the main magnetic field suppresses anti-echo coherence transfer contributions, enabling reference deconvolution to be applied to the remaining echo contributions, in each indirect increment separately, in a manner similar to 1D NMR. We show that, in both 1D and 2D NMR, reference deconvolution enables one to remove the vibrational artefacts of cold head operation in cryogen-free magnets.</div><div>This extends the applicability of reference deconvolution in multi-dimensional NMR and advances cryogen-free technology in liquid-state NMR.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"379 ","pages":"Article 107937"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725001090","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Reference deconvolution, a powerful mathematical tool for removing the effects of imperfections of the main magnetic field on NMR spectra, is revisited in the context of strong static and dynamic field perturbations. The theoretical basis and experimental evidence for the high efficiency of reference deconvolution for strong magnetic field distortions in basic liquid-state one- and two-dimensional NMR are given.
In particular, in 2D NMR, we utilise our observation that a strong static inhomogeneity of the main magnetic field suppresses anti-echo coherence transfer contributions, enabling reference deconvolution to be applied to the remaining echo contributions, in each indirect increment separately, in a manner similar to 1D NMR. We show that, in both 1D and 2D NMR, reference deconvolution enables one to remove the vibrational artefacts of cold head operation in cryogen-free magnets.
This extends the applicability of reference deconvolution in multi-dimensional NMR and advances cryogen-free technology in liquid-state NMR.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.