S. Morales-Chávez , M.A. Valdez-Grijalva , M.A. Díaz-Viera , E. Lucas-Oliveira , T.J. Bonagamba
{"title":"多孔介质中孔径分布估计的核磁共振横向弛豫数学模型","authors":"S. Morales-Chávez , M.A. Valdez-Grijalva , M.A. Díaz-Viera , E. Lucas-Oliveira , T.J. Bonagamba","doi":"10.1016/j.jmr.2025.107922","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear Magnetic Resonance (NMR) is a widely useful technique for studying porous media. Of particular interest are transverse relaxation times (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), which are often associated with pore size when surface relaxation is the dominant mechanism. Under specific physical assumptions, a distribution of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> can be used to infer the pore size distribution (PSD). However, in real porous rocks, a combination of diffusion and relaxation mechanisms complicates this interpretation. Despite recent advancements in industrial applications, conventional models frequently rely on simplifying assumptions, particularly when pore size is considered in the fast diffusion regime. This results in the neglect of transverse bulk relaxation (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn><mi>B</mi></mrow></msub></math></span>) effects, leading to underestimations of pore sizes. To address this, numerical methods, particularly the Finite Element Method (FEM), offer flexibility in modeling symmetric geometries while significantly reducing computational complexity. This paper presents a mathematical NMR model and numerical implementation based on FEM to simulate transverse magnetization signals for a PSD, validated with semi-analytical solutions and applied to synthetic and real samples, such as Berea sandstone. Additionally, a change of variable in the Inverse Laplace Transform (ILT) model is introduced for the direct PSD estimation, demonstrating a strong agreement between experimental and simulated data.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"379 ","pages":"Article 107922"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model of NMR transverse relaxation for pore size distribution estimation in porous media\",\"authors\":\"S. Morales-Chávez , M.A. Valdez-Grijalva , M.A. Díaz-Viera , E. Lucas-Oliveira , T.J. Bonagamba\",\"doi\":\"10.1016/j.jmr.2025.107922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nuclear Magnetic Resonance (NMR) is a widely useful technique for studying porous media. Of particular interest are transverse relaxation times (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), which are often associated with pore size when surface relaxation is the dominant mechanism. Under specific physical assumptions, a distribution of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> can be used to infer the pore size distribution (PSD). However, in real porous rocks, a combination of diffusion and relaxation mechanisms complicates this interpretation. Despite recent advancements in industrial applications, conventional models frequently rely on simplifying assumptions, particularly when pore size is considered in the fast diffusion regime. This results in the neglect of transverse bulk relaxation (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn><mi>B</mi></mrow></msub></math></span>) effects, leading to underestimations of pore sizes. To address this, numerical methods, particularly the Finite Element Method (FEM), offer flexibility in modeling symmetric geometries while significantly reducing computational complexity. This paper presents a mathematical NMR model and numerical implementation based on FEM to simulate transverse magnetization signals for a PSD, validated with semi-analytical solutions and applied to synthetic and real samples, such as Berea sandstone. Additionally, a change of variable in the Inverse Laplace Transform (ILT) model is introduced for the direct PSD estimation, demonstrating a strong agreement between experimental and simulated data.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"379 \",\"pages\":\"Article 107922\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725000941\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000941","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A mathematical model of NMR transverse relaxation for pore size distribution estimation in porous media
Nuclear Magnetic Resonance (NMR) is a widely useful technique for studying porous media. Of particular interest are transverse relaxation times (), which are often associated with pore size when surface relaxation is the dominant mechanism. Under specific physical assumptions, a distribution of can be used to infer the pore size distribution (PSD). However, in real porous rocks, a combination of diffusion and relaxation mechanisms complicates this interpretation. Despite recent advancements in industrial applications, conventional models frequently rely on simplifying assumptions, particularly when pore size is considered in the fast diffusion regime. This results in the neglect of transverse bulk relaxation () effects, leading to underestimations of pore sizes. To address this, numerical methods, particularly the Finite Element Method (FEM), offer flexibility in modeling symmetric geometries while significantly reducing computational complexity. This paper presents a mathematical NMR model and numerical implementation based on FEM to simulate transverse magnetization signals for a PSD, validated with semi-analytical solutions and applied to synthetic and real samples, such as Berea sandstone. Additionally, a change of variable in the Inverse Laplace Transform (ILT) model is introduced for the direct PSD estimation, demonstrating a strong agreement between experimental and simulated data.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.